

PROBLEM

Conventional methods for 6 Degrees-of-Freedom (DoF) pose estimation require one or more of the following:

- Large-scale real training data
- Synthetic textured data
- Use of RGB-D for better inference if trained from only synthetic
- Multiple stages of regression or classification for accuracy when extended to multiple objects and large view-ranges

CONTRIBUTIONS

Propose two algorithms (VIEWMOD, BBOX9) that

- Only require **synthetic textureless CAD model** for training.
- Use of only RGB information during inference
- **Real-time inference** for mobile CPUs.

1. Project 3D model to 2D image with random textures and lighting

2. Apply **Random scaling**, in-plane rotation, and background with noise (Gaussian blur, motion blur, and additive noise)

3. Apply Laplacian Filter

FAST 6DOF POSE ESTIMATION WITH SYNTHETIC TEXTURELESS CAD **MODEL FOR MOBILE APPLICATIONS** Bowen Chen, Juhan Bae, Dibyendu Mukherjee Epson Canada Ltd.

VIEWMOD

- followed by a **LINEMOD** [1] based pose estimation
- **interpretability** to detect failures.

BBOX9

Perform a one-stage direct regression of a **3D bounding box** surrounding the object, followed by a **PnP** routine to estimate the object's 6 DoF pose.

$$\mathcal{L}(x,c,l,g) = \frac{1}{N} (\mathcal{L}_{conf}(x,c) + \alpha \mathcal{L}_{loc}(x,l,g))$$
$$\mathcal{L}_{loc}(x,l,g) = \sum_{i \in Pos}^{N} \sum_{m=1}^{18} x_{ij}^{k} \operatorname{smooth}_{L1}(l_{i}^{m} - \hat{g}_{j}^{m})$$
$$\hat{a}_{i}^{m} = \frac{\int (g_{j}^{m} - d_{i}^{c_{x}})/d_{i}^{w}, \quad \text{if } m \text{ is odd}}{k}$$

• Use 2D bounding box **detection** with **view-classification** • Fast and accurate two-stage inference with improved

 $\left(\frac{g_j^m - d_i^{c_y}}{d_i^w} \right) / \frac{d_i^w}{d_i^w}$, otherwise

RESULTS

Scene ID: [Obj. IDs]	BB8 (real training) [2]	VIEWMOD (textureless training)		BBOX9 (textureless training)	
	>10% visibility	>10% visibility	>70% visibility	>10% visibility	>70% visibility
1: [2, 30]	50.8, 55.4	64.1, 66.0	71.3, 75.8	44.0, 35.8	48.9, 40.7
2: [5, 6]	56.5, 55.6	81.0, 55.0	90.7 , 62.0	75.4, 60.1	84.4, 67.8
4: [5, 26, 28]	68.7, 53.3 , 40.6	68.0, 46.0, 56.7	80.7, 46.0, 64.2	65.6, 37.7, 35.1	78.9, 37.7, 39.8
5: [1, 10, 27]	39.6, 69.9, 50.1	20.8, 69.7, 50.8	21.6, 77.6, 56.7	18.7, 56.7, 24.0	19.3, 63.3, 28.9
7: [1, 3, 13]	42.0, 61.7, 64.5	42.5, 64.1, 18.5	47.4 , 70.4, 21.3	41.5, 64.7, 12.4	46.2, 71.0, 14.3
7: [14, 15]	40.7, 39.7	34.1, 17.1	37.7, 20.6	28.2, 17.1	31.1, 20.6
7: [16, 17, 18]	45.7, 50.2, 83.7	33.1, 64.3, 76.7	38.5, 75.4 , 86.4	21.0, 33.9, 71.8	24.4, 39.1, 81.9
Average	55.3	51.6	58.0	41.3	46.6

BB8 uses real RGB images while VIEWMOD and BBOX9 only use synthetic textureless CAD models.

MOBILE INFERENCE

VIEWMOD and BBOX9 take ~200ms per frame using CPU on Google Pixel 2, using a Tensorflow API.

CONCLUSION

We introduced an efficient and user-friendly 6DoF pose estimation framework for mobile applications:

- textureless CAD.

Reference:

[1] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab, "Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes," in ACCV. Springer, 2012, pp. 548–562 [2] M. Rad and V. Lepetit, "BB8: A scalable, accurate, robust to partial occlusion method for predicting the 3d poses of challenging objects without using depth," in ICCV, 2017, vol. 1, p. 5

• Effective domain adaptation strategy to use synthetic

• **Real-time inference** for mobile CPUs.