
SPECTRAL REFLECTANCE BASED HEART RATE MEASUREMENT FROM 

FACIAL VIDEO  
 

 Arvind Subramaniam1 and Rajitha.K2 

 1.Department of Electrical and Electronics Engineering, BITS PILANI Hyderabad Campus, Telangana, India 
 2. Department of Civil Engineering, BITS PILANI Hyderabad Campus, Telangana, India 

 

ABSTRACT 
 Remote detection of the cardiac pulse has a number of 

applications in sports and medicine, and can be used to determine 

an individual’s physiological state. Previous approaches to 

estimate Heart Rate (HR) from video require the subject to remain 

stationary and employ background information to eliminate 

illumination interferences. The present research proposes a spectral 

reflectance-based novel illumination rectification method to 

eliminate illumination variations in the video. Our method does not 

rely on the background of the video and is                                                                                                                                            

robust to extreme motion interferences (head movements). 

Furthermore, in order to tackle extreme motion artifacts, the 

present framework introduces a novel feature point recovery 

system which recovers the feature tracking points lost during 

extreme head movements of the subject. Finally, the individual HR 

estimates from multiple feature points are combined to produce an 

average HR. We evaluate the efficacy of our framework on the 

MAHNOB-HCI dataset, a publicly available dataset employed by 

previous methods. Our HR measurement framework outperformed 

previous methods and had a root mean square error (RMSE) of 

5.21%.   

 

Index Terms— HR measurement, Recursive Least Squares 

filtering, Feature Point Recovery, Illumination Rectification 

 

1. INTRODUCTION 
 

Standard techniques to determine HR involve physical contact and 

are inconvenient for the user. Several papers have proposed heart 

rate measurement techniques which utilize facial video for the 

estimation of the cardiac pulse [1], [2]. Garbey et al. used the 

thermal signal emitted by facial blood vessels due to the influx of 

blood at every heartbeat [3]. Since the approach is extremely 

sensitive to thermal signals, an elevation in body temperature of 

the user will result in erroneous results. Moreover, it does not take 

illumination and motion artifacts into account.  

In 2014, Li et al. proposed a method to tackle illumination changes 

using the background of the video [4]. Assuming equal spectral 

reflectance for the foreground and the background, they 

neutralized the variation in the foreground by subtracting the 

illumination variation of the background from the face of the user. 

Although the method had reasonably high accuracy, it is likely to 

fail in case the spectral reflectance of the background and skin are 

different. Huan et al. in 2017, deviated from the ICA-based 

approaches and employed Joint Blind source separation (JBSS) to 

measure HR  [5].  Zhang et al. employed a six channel ICA 

algorithm to simultaneously detect HR and blink [6]. However, 

both these methods do not account for motion or illumination 

interferences. A spectral reflectance based approach was proposed 

by Lam et al. in 2015 [7], which used multiple HR estimates from 

local regions to estimate the final HR. However, there is a lot of 

computation involved due to which the overall speed is 

compromised. Moreover, HR is computed from arbitrarily chosen 

feature tracking points, which makes the estimate unreliable. 

 

 

Figure 1: Stages of the proposed framework. 

The proposed method avoids large computations by providing a 

simpler and more robust framework to measure HR from video.      

We propose a novel HR measurement framework which consists of 

a feature point recovery system and a spectral reflectance-based 

illumination rectification approach to deal with motion and 

illumination interferences respectively. Our illumination 

rectification approach is independent of the background and 

produces excellent results even when the foreground and 

background have different illumination sources, unlike previous 

papers which have utilized the mean pixel intensity of the 

background to neutralize changes in illumination [4].  

In Section 2, after performing face detection and tracking, we 

propose a feature point recovery system to deal with motion 

artifacts such as extreme head rotations. Section 3 introduces a 

novel approach to rectify changes in illumination. We primarily 

focus on green channel intensity in Section 3. The experimental 

results and comparison with previous approaches follow in Section 

4. Details of the MAHNOB-HCI dataset are mentioned in Section 

4.2. Finally, Section 5 draws conclusions. 

 

2. RECOVERY OF FEATURE TRACKING POINTS 
 

We employed the pose-free facial landmark fitting tracker for face 

detection and tracking [8]. This tracker has been employed by 

previous HR estimation methods and can simultaneously handle 

face detection, pose-free landmark localization and tracking over a 

large range of motions in real time [7].  

Following face detection and tracking, a feature point recovery 

system has been devised to overcome extreme motion artifacts. In 

case of large head movements, it is possible for parts of the 

subject’s face to get obscured from the camera. As a result, this 

may lead to the loss of a large number of feature points. In order to 

recover the lost feature points, we monitor the total number of 

features at any given instant and compare it with a threshold value. 

In case the number of tracking points falls below the threshold 

3362978-1-5386-6249-6/19/$31.00 ©2019 IEEE ICIP 2019



value, the landmark tracker is reapplied, exactly 36 frames (0.6s) 

after the frame where the failure had occurred. We have taken the 

threshold value to be 60% of the total number of feature points.  

However, monitoring the total number of feature points is not a 

sufficient requirement. Even though reapplying the tracker would 

produce nearly the same number of feature points as before, it 

would not be possible to recover the feature points corresponding 

to the obscured portion of the face, since the new feature points 

would have different locations. For instance, in the central figure 

in Fig. 2, even though we have obtained the same number of 

feature points as before, the feature points corresponding to the 

obscured portion of the face are missing. To resolve this, we 

compute the root mean square error (RMSE) of the new feature 

point centroid (𝝁(𝒕)) relative to the old centroid (𝝈(𝒕)) using 

 

 

 

 

(1) 

 

where N denotes the number of features points at a given frame t 

and ∈(t) denotes the RMSE. An important point to note is that the 

second step would take place only if the first criterion is satisfied. 

The landmark tracker is applied once every 36 frames (0.6 

seconds) until ∈(t) reaches a minima. Fig. 3 illustrates the choice 

of RMSE and the corresponding frame at which the feature points 

are recovered. Face detection and tracking are not re-implemented 

beyond this frame. Since the pose-free landmark tracker takes less 

than 0.20 seconds per image combined, our framework can tackle 

extreme head rotations without increasing the computational 

complexity or compromising the overall speed of the model. We 

have chosen a time interval of 0.6 seconds since the feature point 

recovery system takes a total of 0.35 seconds for face detection, 

tracking and computation of RMSE (maximum). 

As shown in Fig. 2, after recovering lost feature points, it is 

possible to consistently track the subject’s face and obtain the 

feature points despite considerable head movement. We have 

plotted the RMSE for a 90 degree rotation of the subject. As one 

may observe in Fig.4, the RMSE starts from zero since there is no 

deviation between the new and the old centroid initially. However, 

it gradually increases as the subject’s head rotation increases. An 

interesting point to note is the absence of an RMSE point 

corresponding to frame 180 (after failure). This is because the 

number of feature tracking points are less than the threshold of 

60%. Since the first condition has failed, the RMSE has not been 

calculated from frames 150 to 190 (when a portion of the face is 

completely obscured from the camera). 

As shown in Fig. 3, the process of recovering feature tracking 

points is complete after the minima is achieved. Consequently, it 

terminates the process and moves on to the next step – Illumination 

Rectification. 

 
Figure 2: Result after recovery of feature tracking points. The 

features in the left part of the face are recovered, even after being 

completely obscured from the camera. From left to right, the frame 

numbers are 21, 170 and 309. 

 

Figure 3: The RMSE represents the difference in the number of 

pixels between 𝝁(𝒕) and 𝝈(𝒕). The recovery of feature points 

terminates after the minima is achieved – in this case, 288 frames 

(4.7 seconds) after tracking failure.   

3. ILLUMINATION RECTIFICATION 
 

The spectral reflectance of the skin is a result of two 

components: the influx of blood to the face at every heartbeat, and 

the pigmentation of the skin [9]. Hence, we have modeled the 

intensity of a facial pixel as: 

 

  (2) 

 

where and are the pixel intensities due to blood flow and the 

pigmentation (due to melanin, carotenes, etc.) of the subject. The 

intensity can be represented as: 

 

  (3) 

 

where  is the normalized spectral power distribution of the 

illuminant,  is the camera spectral sensitivity  for channel i 

and  is the spectral reflectance of the point over 

wavelengths  [10]. However, as a result of illumination 

variations, the intensities in eqn. 2 have a component 

corresponding to illumination interferences as well. Hence, 

combining eqns. 2 and 3, the total intensity obtained from the face 

of the subject is: 

 

 
 

(4) 

 

where   is the 

intensity due to blood  flow (with illumination variations), and 

  represents the 

intensity corresponding to pigmentation (chiefly due to melanin 

and carotenes) respectively. An important point to note is that 

these intensities consist of illumination interferences as well. After 

obtaining the two intensities using independent component 

analysis (ICA), we utilize the illumination interferences in 

 to remove the illumination interferences in 

.  

Since the radiance and the corresponding illumination variations 

are consistent within the subject’s face, the spectral distributions 

corresponding to the illumination variations of skin pigmentation 

would be equal to that of blood flow.  Our illumination 

rectification approach is similar to Li et al. [4]. However, we do 

not take the background into account and instead, employ spectral 
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reflectance to get the intensities due to blood flow and 

pigmentation. The intensity due to pigmentation acts as the 

background, using which we are able to cancel the illumination 

interferences in . Similar to Li2014, we model 

illumination interferences as a linear function of  . 

 

 
 

(5) 

 

where  represents intensity solely corresponding to 

illumination interferences. Hence,  can be 

modeled as: 

 

 
 

 

(6) 

From eqns. 5 and 6, we have: 

 

 
 

(7) 

 

Rather that solely looking at eqn.7, we have focused on eq.5 and 

tried to minimize the error . Once 

the optimal K is estimated, the reasonable approximation for 

 can be computed. 

We have utilized the Recursive Least Squares (RLS) adaptive filter 

to calculate the ideal value of K that minimizes the error. The RLS 

adaptive filter is an algorithm that recursively computes the filter 

coefficients that minimize a linear cost function related to the input 

signal [11].  

Let  be the estimated filter weight for each point time point . 

After initializing the weights, the RLS filter updates the filter 

weights as 

 

 (8) 

 

Here,  is the autocorrelation matrix given by 

 

 
, 

(9) 

 

where  is the transpose of and  is a 

positive constant smaller than 1. The RLS filter will continue to 

run its iterations until K(t) converges to a suitable value that 

minimizes the error/deviation . We 

have applied the Local Region Based Active Contour (LRBAC) 

method to segment the background region of each frame [12]. 

Since LRBAC is a region-based approach, it is insensitive to image 

noise, as opposed to edge-based methods such as the Distance 

Regularized Level Set Evolution (DRLSE) method used by Li et 

al. Fig. 4 shows the green channel skin pigmentation intensity 

before and after illumination rectification. As one may observe, the 

peaks representing illumination interferences have been removed 

without distorting intensity values corresponding to normal 

illumination. We have also compared the illumination rectified 

green channel blood flow intensity with that of the ground truth 

signal in Fig. 5. As it can be seen, the illumination rectified 

intensity we obtain is almost identical to the ground truth signal. 

 

 

 

Figure 4: The skin pigmentation intensity corresponding to the 

spectral reflectance of the skin (green channel). The illumination 

interferences (peaks at 3s, 8s and 14s) have been removed post 

rectification (bottom).  

 

Figure 5: The illumination rectified signal due to spectral 

reflectance of blood flow (green channel) and the ground truth 

green pixel intensity (left). Ground truth is obtained from the 

recording of the same scene in conditions without illumination 

variations (right). 

4. RESULTS 

 

4.1. HR Extraction  
Following illumination rectification, we normalize each channel 

(RGB) and apply ICA to extract plethysmographic (PPG) signals. 

After performing FFT on each PPG signal, we found that the PPG 

signal corresponding to the green colour channel had the most 

prominent frequency among the three colour channel, as shown in 

Fig. 6. Finally, temporal filters are applied to band limit the range 

of frequencies corresponding to the HR of an average individual. 

As opposed to computing HR from the mean facial pixel intensity, 

illumination rectified pixel intensities of selective feature points 

are obtained. This enables a more accurate and reliable HR 

estimate since individual feature points can be chosen based on 

their location, unlike a random selection of feature points as done 

by Lam et al. Since the HR of a person ranges from 40-240 bpm, 

we set the range of frequency as [0.6, 4] Hz. In this instance, the 

HR was found to be 1.21 Hz, which is equivalent to 72.6 bpm. An 

important to note is that the HR is obtained from feature points 

located  in  the  central  portion of the face (nose). This is to ensure  

that our HR estimate is free from interferences such as facial hair,  
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spectacles, sunglasses, etc. For instance, the PPG signal obtained 

from the eye or cheek of the subject may be distorted due to the 

afore-mentioned interferences. After choosing feature points in the 

central portion of the subject’s face, multiple HR estimates from 

each feature point have been combined to produce a single average 

HR. Fig. 6 directly shows the final average HR obtained. The 

process of combining individual HR estimates makes the system 

tolerant to noise and ensures that the framework works well even if 

the illumination interferences within the subject’s face are 

different. In other words, our framework does not assume uniform 

blood flow and illumination across a subject’s face. This adds a 

greater degree of robustness to our method. 

 

 

Figure 6: Mean HR obtained from feature points in the central portion of 

the subject’s face. 

4.2. Performance on MAHNOB-HCI dataset  

 
The MAHNOB-HCI database is a public database comprising 527 

colour videos of 27 subjects (12 males and 15 females). The videos 

have a resolution of 780 x 580 pixels recorded at 61 FPS. In order 

to be consistent with  previous methods,  we chose videos from the  

emotion elicitation portion of the database. Since the videos were 

of varying lengths, we used frame 306 to frame 2135 (30 seconds) 

of each video to measure the average heart rate. 

In Table 1, [i], [ii], [iii] and [iv] refer to face detection and 

tracking, Feature point recovery, Illumination rectification and 

Temporal filtering respectively. 

Framework RMSE 

(%) 

MAE 

 
% Absolute 

error < 5 

bpm 

r 

Huan2017 14.5 8.9 59.7 0.63* 

Zhang2017 15.7 8.7 63.2 0.65* 

Li2014 15 7.8 68.1 0.728* 

Lam2015 8.9 4.7 75.1 0.85* 

Ours ([i]+[iv])  28.2 16.5 42.1 0.31 

Ours([i]+[ii]+[iv]) 19.2 11.3 56.3 0.59* 

Ours([i]+[iii]+[iv]) 16.8 10.8 61.2 0.58* 

Ours (All Steps) 

([i]+[ii]+[iii]+[iv]) 

5.21 3.5 86.4 0.91* 

Table.1. Performance and comparison of each framework on the 

MAHNOB-HCI dataset. * indicates that the result is statistically 

significant at p = 0.01.  

We consider the RMSE, Mean Absolute Error (MAE), correlation 

r and the percentage of Absolute Error less than 5bpm. As it can be 

seen from Table.1, our method (after including all steps) 

outperforms all the other methods, including Zhang2017 and 

Huan2017, since these models do not account for illumination 

interferences. Zhang 2017 performed slightly better than 

Huan2017, as a result of using a six channel ICA, which 

automatically eliminated minor motion and illumination artifacts 

through one of the six channels (other than the two channels 

corresponding to BVP and blink rate). While Lam2015 had the 

best results among previous methods, their framework chose 

arbitrary feature points to calculate HR, which may compromise 

the accuracy in case the chosen feature points are unsuitable and 

can provide a distorted blood flow intensity.  

In addition to evaluating the performance of previously proposed 

methods, we have also evaluated the contribution of each 

component of our framework in Table 1. We obtained an increase 

in correlation r from 0.31 to 0.91 upon inclusion of (ii) and (iii) in 

our framework. Our method outperforms Li2014 since the latter 

assumes equal spectral reflectance for the foreground and the 

background which may not always be the case. Further, we also 

compare the HR error of our framework with Li2014 and 

Lam2015. As shown in Fig.7, we estimate 421 cases (86.4%) with 

errors of less than 5 bpm, while the numbers for Li2014 and 

Lam2015 are 332 (68.1%) and 366 (75.1%) respectively.  

An important point to note is that not all videos could be used 

since the ground truth data was unavailable for certain videos. 

Hence, we were ultimately able to use 487 videos. As a result, our 

implementation of Li2014 has a different result than the original 

paper, since it was tested on 527 videos. However, our results 

concur with Lam2015, since the latter was also implemented on 

487 videos in the MAHNOB-HCI dataset. 

 

Figure 7: Comparing HR error distributions of our method with 

Li2014 and Lam2015 

5. CONCLUSION 
In this paper, we have proposed a novel feature point recovery 

system to tackle motion artifacts and an illumination rectification 

method to address the problem of illumination variations. An 

important aspect of our framework is that our approach does not 

depend on the background to rectify illumination artifacts. As a 

result, we obtain a higher accuracy on the MAHNOB-HCI dataset 

as compared to previously proposed methods. Our approach 

ensures accurate HR measurement even if the background and 

foreground are illuminated by different light sources.  Next, instead 

of relying on a single HR estimate, we utilized independent HR 

estimates from feature points in the central portion of the subject’s 

face – which is relatively free from interferences such as facial 

hair, spectacles, etc. – to recover a single average HR estimate. 

This enables our framework to have a greater degree of robustness 

to illumination interferences.  

A direction for future work would be to focus on the application of 

accurate video-based HR measurement in medical diagnosis such 

as the detection of potentially serious breathing disorders like sleep 

apnea.  
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