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Fig: 1: Proposed Architecture (Subset Selection Module)

& Given a sequence of frames of a person captured within a camera FoV, the goal
is to find out an optimal subset of frames relevant to the task of person re-id.
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e Using an optimal/diverse subset will reduce memory and computation time. The proposed DPP based subset selection method is generic as it can be 3 ]
. . . R . N <)
e We use Determinantal Point Process (DPP) [1,2] to achieve this objective which ea5|ly. coupled with any v!deo based pretrained model and any fusion ’
is a statistical tool for subset selection with maximum diversity. technique can be used atop it.
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First to propose the use of DPP for the application of video based person re-id length N, with index starting from 1, is partitioned

Input: matrix L and count of sub s k (Seq of (anchor) Sequence Fig. 2: Visualization of the subset returned by proposed method (highlighted in red color)
into k subsequences.) CON CLU SIO N

Let g={1,2,...,M} denote a set containing M frames of a video tracklet. , .
p={L2...,M} o E : zﬂi’:ﬂ Video based re-id problem can be framed as subset selection problem where

. ) L 3 X0 ® important frames of a person need to be identified for better & efficient re-id.
letaCp beany subsezvir;os:_srobatb[hty Ufgbimg STIeCteé is given by: : :,;,:, =k do Subset of We propose the use of two variants of the classical DPP technique, LGDPP and
: Identity matrix : Kernel matrix
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Then, total number of possible subsets =

The most likely subset given by MAP estimate is : if4 £ 0 then
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