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INTRODUCTION

* Automated curvilinear image segmentation is a crucial step to
characterize and quantify the morphology of blood vessels.

* We propose a dual pipeline RF_ OFB+U-NET that fuses U-Net deep
learning features with a low-level image feature filter bank using
the RF classifier for vessel segmentation and venule) .

* The hybrid approach was tested on 60 Dura mater epi microscopy
images and improved the segmentation of thin vessel structures by

PROPOSED APPROACH

* Stepl (Train U-Net optimized):
image, augment each tile with scaling, rotation and reflection to 8 tiles.
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nearly 5% using the Dice similarity coefficient compared to U-Net.
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e Step2 (Train RF with 19 features): Train RF classifier with 18 features
using convolutional filter banks (OFB) along with U-Net foreground
likelihood regression map, 4-fold cross validation, each fold 30 images.

* Step3 (Inference) : Use the resulted inference model to segment our
60 (40 OV + 20 OVX) epifluorescence microscopy images.
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PRE- PROCESSING USING CLAHE

* Training time is about 24 hours, testing time is 40 sec per image.

COMPARISON RESULTS

Sens | Prec | Spec | Acc | DICE

RF 86.61 87.44|99.16 98.21 86.68

RF + pre all features | 89.03 [84.05| 98.89 {98.07 | 85.93
RF + pre intensity only| 87.66 |87.62|99.15 98.27| 87.35
U-Net 78.35 [89.54|99.37 |97.89| 83.03

U-Net optimized 89.22 85.81|98.98 98.24 86.88
RF OFB+U-Net 89.68 [86.96|99.08 |98.37, 88

COMPARISON OF PROPOSED PIPELINE FOR

VESSEL SEGMENTATION USING DICE VALUES
(a) Raw Imgge (b) Ground Truth (c) RF OFB (d) U-Net (e) RF OFB+U-Net
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CONCLUSION

e Combines an optimized convolution feature filter bank with U-
Net learned vessel regression feature map using RF classifier.

e The proposed hybrid approach outperforms either individual
hand-crafted or deep learning U-Net feature groups for vessel
segmentation in terms of accuracy (98.4%) and Dice (88%).



