

MOTIVATION

- Omni-directional cameras have large field of view (FOV) with low resolution
- iFMI method achieves better performance than feature-based method on difficult environments (e.g. foggy, featureless)
- iFMI method is only applicable on 2D motion and pin-hole images

CONTRIBUTIONS

- Using the iFMI method to estimate motion between omniimages; hence
- Allowing 3D registration instead of 2D for iFMI;
- Proposing a motion model based on sub-image patches to compensate for omni-images non-linear distortions;
- Providing baseline comparisons against commonly used registration feature-based methods.

MOTION MODEL

Fig.1 (a) Catadioptric Omni-directional Camera Model^[1]. (b) Omnidirectional image (c) Panorama image obtained from omni-image. (d) Non-overlapping and overlapping sub-image extraction.

IMPROVED FOURIER MELLIN INVARIANT FOR ROBUST ROTATION ESTIMATION WITH OMNI-CAMERAS

Qingwen Xu¹ Arturo Gomez Chavez² Heiko Bülow² Andreas Birk² Sören Schwertfeger¹ ¹School of Information Science Technology of ShanghaiTech University ²Robotics Group, Computer Science & Electrical Engineering, Jacobs University Bremen, Germany

iFMI Method

- Rotation is the same in time and frequency domain
- Scaling between two images in frequency domain can be described as

 $|G(a_i^1)| = \sigma^{-2} |G(\sigma^{-1}a_i^2)|$ • Eq. (1) can be expressed as Eq. (2) with iFMI descriptor $V_{G(a_i^1)} = \sigma^{-2} e^{-j2\pi r(\theta,s)} V_{C(s)}$ (2)

IMPLEMENTATION

Algorithm: Proposed iFMI-based rotation estimation

- 1: Input: Omni images I_o^1, I_o^2 ; Noise filter thresholds th_{pr} , th_{pnr}
- 2: Obtain panorama images I_p^1 , I_p^2 of size $W \times H$ by cartesian-topolar transformation
- 3: Extract sub-image set \mathbb{A}^1 , \mathbb{A}^2 from I_p^1 and I_p^2
- 4: for all sub-images $a_i^1 \in \mathbb{A}^1$, $a_i^2 \in \mathbb{A}^2$ do
- Compute relative motion 5:
- $m_i = iFMI(a_i^1, a_i^2, th_{pr}, th_{pr})$
- Select pixel $p_{a_i}^1 = (c_x + \delta, c_y)$ 6:
- Find motion pixel pair $F_i = ($ 7:
- Convert F_i to omni-image co polar-to-Cartesian(F_i)
- Find camera ray pair $(P_i^1, P_i^2) = \pi^{-1}(F_i)$ 9:
- 10: Add (P_i^1, P_i^2) to correspondences set S 11: end for
- 12: Transformation T_2^1 = STEWENIUS-5-Points(S)
- 13: Output: T_2^1

$$(p_{a_i}^1, p_{a_i}^2)^T = [s, \theta, t_x, t_y]^T$$

 $(p_{a_i}^1, p_{a_i}^2)$

omnidirectional camera calibration and structure from motion," in Computer Vision Systems, 2006 ICVS'06. IEEE International Conference on. IEEE, 2006, pp. 45–45. [2] Miriam Schnbein and Andreas Geiger, "Omnidirectional 3d reconstruction in augmented manhattan worlds," in International Conference on Intelligent Robots and Systems (IROS), 2014

iFMI(Ours)	ORB	AKAZE
0.058 ± 0.056	0.166 ± 0.078	0.128 ± 0.044
0.107 ± 0.053	0.300 ± 0.337	0.183 ± 0.204
0.075 ± 0.080	0.191 ± 0.139	0.153 ± 0.058
0.080 ± 0.025	0.219 ± 0.071	0.155 ± 0.028
0.12	0.11	0.75