On Training the RNN Encoder-Decoder for Large Vocabulary End-to-end Speech Recognition

Liang Lu, Xingxing Zhang, Steve Renals

Centre for Speech Technology Research The University of Edinburgh

23 March 2016

Speech recognition problem - review

- A sequence to sequence transduction problem
- Given $\mathbf{y} = \{y_1, \cdots, y_J\}, y \in \mathcal{Y}$ and $\mathbf{X} = \{\mathbf{x}_1, \cdots, \mathbf{x}_T\}$, compute $P(\mathbf{y} \mid \mathbf{X})$
- However, it is difficult

 \circ T \gg J and T can be large (> 1000)

- $\circ~$ Large size of vocabulary $|\mathcal{Y}|\approx 60 \textit{K}$
- Uncertainty and variability in features
- Context-dependency problem

... 2 of 22

Hidden Markov Models

• Hidden Markov Models — convert the sequence-level classification problem into a frame-level problem

$$egin{aligned} & \mathcal{P}(\mathbf{y} \mid \mathbf{X}) \propto \mathcal{P}(\mathbf{X} \mid \mathbf{y}) \ & pprox \mathcal{P}(\mathbf{X}_{1:\mathcal{T}} | \mathcal{Q}_{1:\mathcal{T}}) \mathcal{P}(\mathbf{y}) \ & pprox \mathcal{P}(\mathbf{y}) \prod_t \mathcal{P}(\mathbf{x}_t | q_t) \mathcal{P}(q_t | q_{t-1}) \end{aligned}$$

Hidden Markov Models

- Problems of HMMs:
 - Loss function: minimise the word error $\mathcal{L}(\mathbf{y}, \tilde{\mathbf{y}})$ versus maximise the likelihood $p(\mathbf{X}_{1:T} | Q_{1:T})$
 - $\circ~$ Conditional independence assumption
 - $\circ~$ Weak sequence model first order Markov rule
 - $\circ \text{ System complexity: monophone} \rightarrow \text{alignment} \rightarrow \text{triphone} \rightarrow \text{alignment} \rightarrow \text{neural net}$

- Can we train a model that directly computes $P(\mathbf{y} \mid \mathbf{X})$?
- CTC Connectionist Temporal Classification
- Attention-based recurrent neural network (RNN) encoder-decoder

- CTC Connectionist Temporal Classification
 - $\circ \; \; \mathsf{Method:} \; \{y_1, \cdots, y_J\} \to \{\hat{y}_1, \cdots, \hat{y}_T\} \to \{\mathbf{x}_1, \cdots, \mathbf{x}_T\}$
 - $\circ~$ Replicate the labels (a b c \rightarrow a a b b b \oslash c) with blank symbol \oslash
 - $\circ~$ Approximate the conditional probability

$$P(\hat{\mathbf{y}} \mid \mathbf{X}) = \prod_{t=1}^{T} P(\hat{y}_t \mid \mathbf{x}_t)$$
(1)

[1] A. Graves, et al, "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks", ICML 2006

[2] A. Graves and N. Jaitly, "Towards end-to-end speech recognition with recurrent neural networks", ICML 2014

[3] A. Hannun, et al, "Deep Speech: Scaling up end-to-end speech recognition", arXiv 2014

[4] H. Sak, et al, "Fast and Accurate Recurrent Neural Network Acoustic Models for Speech Recognition", INTERSPEECH 2015

- Still reply on the independence assumption
- RNN may help to mitigate the problem

Attention-based RNN encoder-decoder

$$P(\mathbf{y} \mid \mathbf{X}) \approx \prod_{j} P(y_j \mid y_1, \cdots, y_{j-1}, \mathbf{c}_j)$$
(2)
$$\mathbf{h}_{1:T} = \text{RNN}(\mathbf{x}_{1:T})$$
(3)

$$\mathbf{c}_i = \mathsf{Attend}(\mathbf{h}_{1:T}) \tag{4}$$

 D. Bahdanau, et al, "Neural Machine Translation by Jointly Learning to Align and Translate", ICLR 2015
J. Chorowski, et al, "Attention-Based Models for Speech Recognition", NIPS 2015
L. Lu et al, "A Study of the Recurrent Neural Network Encoder-Decoder for Large Vocabulary Speech Recognition", INTERSPEECH 2015
W. Chan, et al, "Listen, Attend and Spell", arXiv 2015

- In this paper, we look at three aspects of this model
 - SGD optimisation
 - Implicit language modelling
 - Word vs. Character output labels
- Dataset Switchboard (300 hours pprox 100 million frames)

Experiment

- SGD optimisation
 - $\circ~$ It takes around 2 week to run 15 epochs in our baseline configuration
 - Tuning SGD learning rate is expensive
 - Adaptive SGD learning rate AdaGrad, AdaDelta, Adam, ...

16 of 22

THE UNIVERSITY of EDINBURGH

Experiments

Table: Scheduling the SGD learning rates.

SGD learning rate	Feature	SWB
SGD_adadelta	MFCC	38.8
+ manual SGD	MFCC	36.2
SGD_adadelta	FBANK	34.7
+ manual SGD	FBANK	26.8

Experiment

• Implicit RNN language modelling

Experiment

Table: Implicit RNN language modelling.

System	Output	Avg
EncDec no LM	word	26.8
+ LongMem	word	26.3
+ 3-gram rescoring	word	25.8
EncDec no LM	char	32.8
+ LongMem	char	30.9
+ 5-gram rescoring	char	30.5

THE UNIVERSITY of EDINBURGH

Experiment

- Comparison to related works
- Results on Eval2000

Table: Attention-Based RNN vs. CTC and HMM-DNN hybrid systems.

System	Output	SWB
HMM-DNN sMBR [Vesely 2013]	-	12.6
CTC no LM [Maas 2015]	char	38.0
+7-gram	char	27.8
+RNNLM (3 hidden layers)	char	21.4
Deep Speech [Hannun 2014]	char	20.0
CTC+WFST decoder [Miao 2016]	phone	14.5
EncDec no LM	word	26.3
EncDec no LM	char	27.3

A new model without attention

• Segmental RNN – Segmental CRF with encoder RNN

 [1] L. Lu, L. Kong, et al, "Segmental Recurrent Neural Networks for End-to-end Speech Recognition", arxiv 2016
21 of 22

Thank you ! Questions?