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ABSTRACT

In this paper, we present a novel stereo matching network
aimed at real-time with high accuracy. Current deep architec-
tures form a massive cost volume in order to leverage global
context information. However, forming the cost volume is
time consuming and it acts as a bottleneck of the network. We
form the smaller cost volume than previously used for speed
gain. However, the down-scaled cost volume leads to accu-
racy degradation at areas of thin structures and homogeneous
regions. To overcome this limitation, we use focal loss that
handles hard negative examples. Moreover, we ease multi-
modal distribution problem by using top-k argmin operation
when regressing disparity. We call our proposed network RT-
SNet, which runs over 40 FPS on color stereo images using
NVIDIA Tesla P100. We evaluate our proposed network on
KITTI 2015 dataset, experimental results show that RT'SNet
outperforms other networks with similar runtime.

Index Terms—
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1. INTRODUCTION

Stereo matching is a classical computer vision problem that
estimates depth from a pair of left and right images. Typ-
ical stereo matching consists of four steps: matching cost
computation, cost aggregation, optimization and disparity re-
finement. Recently, the use of Convolutional Neural Net-
work (CNN) has significantly improved an accuracy by ag-
gregating semantic information. Zbontar and Lecun et al. [1],
Shaked et al. [2] showed that CNN is effective in comput-
ing the matching cost. They applied CNN to classify whether
two individual patches from left and right images match or
not. Luo er al. [3] treated the problem as multi-class classi-
fication by using inner product and improved both accuracy
and speed. However, these methods focused on computing
matching costs that they needed following aggregation [4] or
optimization [5] steps with post processing. In recent years,
studies attempt to regress disparity by end-to-end network.

This work was supported by Institute for Information communications
Technology Promotion(IITP) grant funded by the Korea government(MSIT)
(No. R7117-16-0164, Development of wide area driving environment aware-
ness and cooperative driving technology which are based on V2X wireless
communication)

Fig. 1: The result of our proposed method. From top: left
stereo input image, predicted disparity map, error map. In
error map, red pixels represent error.

GC-Net [6] formed a massive cost volume by concatenating
left and right features in each corresponding disparity level.
Then encoder-decoder architecture of 3D CNN was applied
to the network to learn context by regularizing the cost vol-
ume. Finally, the disparity was estimated by a soft-argmin
operation which was fully differentiable and able to regress
sub-pixel disparity. By using the fully differentiable cost vol-
ume, GC-Net trained the entire network end-to-end. PSM-
Net [7] extended GC-Net to enlarge receptive fields by ap-
plying SPP [8] module and stacked hourglass architecture.
Recent end-to-end stereo matching networks show high per-
formance with reasonable speed. However there still exists
problems with regard to speed and accuracy. First of all, cur-
rent networks form massive cost volume in order to learn con-
text without losing any information. However, forming cost
volume is time consuming and it acts as a bottleneck of the
network. Second, the matching cost may have multi-modal
distribution which causes harmful effect when regressing dis-

parity.
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Fig. 2: Network architecture of our proposed RTSNet.

In this paper we propose RTSNet, a novel real-time stereo
matching network with high level of accuracy. For speed gain,
we form the smaller cost volume than previously used. How-
ever, the down-scaled cost volume leads to accuracy degra-
dation at areas of thin structures and homogeneous regions.
To overcome this limitation, we use focal loss [9] that can
handle hard negative examples. As shown in Fig. 1, RTSNet
predicts accurate disparity even in the areas of thin structures.
Moreover, we ease multi-modal distribution problem by using
top-k argmin operation when regressing disparity.

2. PROPOSED METHOD

Our proposed RTSNet takes input as left and right color im-
ages of size HxWx3 and generates a disparity map in 0.023
seconds. To achieve the goal of estimating disparity in real-
time with high accuracy, we concentrate on two different as-
pects when designing our network. For speed, we stack a
small cost volume. For accuracy, we extract information at the
whole image level and focus on hard examples to be matched.
Moreover, we ease the problem of multi-modal distribution
by using fop-k argmin operation. The architecture of our pro-
posed network is illustrated in Fig. 2.

2.1. Feature Extraction

Rather than using raw pixel intensities, we use features ex-
tracted from input images since features can learn context re-
lationship better. As shown in Fig. 2, we use a weight sharing
pipeline (Siamese network) to learn corresponding features
more effectively. We first extract features F©, F' from left
and right images. We apply 3x3 convolutional layer with
stride of 2 in order to reduce computational demand. Then
another two 3x3 convolutional layers with stride of 1 is ap-
plied. Following this layer, we apply 2x2 average pooling
layer to extract small and compact features. Then, we append
3 residual blocks [10], each consists of two 3 x 3 convolutional
filters. The first residual block has stride of 2 and others have

stride of 1. We inform that each convolutional layer is fol-
lowed by batch normalization and RELU.

Finally, we use a pyramid pooling module which was pro-
posed in PSPNet [11]. The pyramid pooling module extracts
features by average pooling under four different scales, then
concatenates all together in order to obtain multi-level feature
information. In our network, we use four average pooling
blocks of size : 32x32, 16x16, §x8, 4x4. By concatenat-
ing features with different scales, our final extracted features
have big receptive fields even though the size is as small as

% X % x F'. We keep the dimension of feature F to 32.

2.2. Cost Volume

A cost volume is used to learn matching cost using features.
GC-Net [6] approached to form a cost volume by concate-
nating left and shifted right features in each corresponding
disparity level. In order to aggregate global context informa-
tion, deep architectures stack the cost volume in massive size
which is time consuming for both train and inference.

Assume that the size of extracted feature is % X % xF,
since we concatenate left and right features in disparity di-
mension, the size of the cost volume would be % X % X % x2F,
where D represents maximum disparity. It is obvious that the
massive cost volume facilitates 3D CNN to aggregate infor-
mation without losing fine-grained details. However, time
spent for stacking the cost volume would increase. That is
to say, there exists a trade off between time and accuracy.
To overcome this limitation, we minimize the time spent
for concatenation by forming a small cost volume. Since
we extracted features having a large receptive field, we are
able to form the cost volume which is small but containing
semantic context information. Current state-of-the-art net-
works form the cost volume in size £ x W x 2 x2F [6, 12]
or ZxWxLxoF ]. In contrast we stack the small

[ b
cost volume of size % X % X % x2F.
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Fig. 3: Comparison of (a) soft-argmin with our proposed (b)
top-k argmin operation in multi-modal distribution. First row
represents a cost for each disparity and the cost used for cal-
culating probability is colored with red. Second row repre-
sents a softmax probability. Estimated disparity is marked
with a red line whereas ground truth disparity is marked with
a black dotted line. Notice that fop-k argmin predicts correct
disparity while soft-argmin predicts wrong disparity.

2.3. 3D CNN & 2D CNN

3D CNN aggregates context in a spatial dimension as well
as a disparity dimension. We use the stacked hourglass ar-
chitecture which was proposed in PSMNet [7]. Hourglass is
an encoder-decoder architecture and stacked hourglass aggre-
gates more context information by stacking three hourglasses.
The architecture and weighted summation of three losses with
(0.5, 0.7, 1.0) are performed the same as in PSMNet. Given
T x W x LD x2F cost volume, 3D CNN is applied and pro-
duces % x% x% x1 size cost volume. Next, we apply 3D
transposed convolution filter to upsample the cost volume to
% X % X g size. The use of 3D transposed convolution fil-
ter facilitates our network to generate more accurate disparity
map. Then we upsample via trilinear interpolation to form
HxWxD size cost volume. At last, 2D CNN is applied to the
cost volume to look at surrounding pixels. We use one 3x3
dilated convolution filter [14] and another two 3x3 convolu-
tion filters with stride of 1. 2D CNN makes the network to

explicitly incorporate global context information.

2.4. Disparity Prediction

Given filtered cost volume, we can estimate each pixel’s dis-
parity by simply selecting the disparity that has minimum
cost, using an argmin operation. However, the argmin opera-
tion is unable to estimate sub-pixel disparity and not differen-
tiable. Therefore GC-Net [6] proposed soft-argmin which es-
timates continuous disparity and is fully differentiable. Soft-
argmin regresses disparity by summing the product of each
disparity’s softmax probability with its disparity.

Dmaz
soft-argmin = Z d-o(—cq) (1
d=1

Mathematically defined in (1), d represents the disparity
and ¢y represents the cost of disparity d whereas o(-) is a
softmax operation. Note that we calculate disparity from 1 to
D4z since disparity O indicates an invalid pixel. Majority of
state-of-the-art stereo matching networks [6, 7, 13, 15, 16] use
soft argmin to regress disparity. However soft-argmin fails
to estimate correct disparity in multi-modal distribution as
shown in Fig. 3. GC-Net argued that if the network is trained
with soft-argmin, then the distribution will tend to be uni-
modal by learning to pre-scale the cost. However, the cost
does not always guarantee to be the uni-modal distribution
and it causes harmful effect when regressing disparity.

To overcome the weakness, we define top-k argmin opera-
tion which is robust in multi-modal distribution and regresses
sub-pixel diparity with k essential disparities. An illustration
is shown in Fig. 3 and mathematically defined in (2):

k
top-k argmin = Z d; - o(—ca,) (2)

i=1
First, we select disparities that belong to top k argmin.
Then we append softmax over selected disparities’ cost and
weighted sum with each selected disparity. In (2) we define
top k argmin disparities as d; and its cost as cq,, where i ranges
from 1 to k. In our experiment, we set D, 4, = 192 and k = 3.
We demonstrate that using few essential disparities performs
better especially in the multi-modal distribution. Since the
operation is not differentiable, we use this operation only in
inference time. During training, we use a focal loss which is

described in the next sub-section.

2.5. Loss

In stereo matching, it is common to use a loss that is less
sensitive to an outlier, such as smooth L1 loss. However,
since the loss treats the thin structures as the outlier, the net-
work has difficulty in matching thin structures despite of how
long it has been trained. In contrast, we use the focal loss [9]
that performs opposite role, i.e. much sensitive to the outlier.
Mathematically defined in (3), the focal loss is a weighted
cross entropy scaled by ~ to focus on misclassified examples.
« is usually set by inverse class frequency and pg represents
probability of disparity d. For instance, if the example is well
classified, i.e. pg — 1, then the loss is down-weighted that
the network can focus on hard examples. By using focal loss
our network is robust on thin structure as shown in Fig. 1. In
our experiment, we set 7y to 2 and did not use « since there
was no significant improvement.

Dmax

focal loss = — Z ag-(1— pd)V -log pa 3)
d=1



3. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed network on KITTI
2015 dataset [17] in terms of both accuracy and runtime. The
dataset contains 200 training and 200 testing images with H
=375, W = 1242. We implement the proposed method on a
single NVIDIA Tesla P100 using Pytorch. During training,
we use a batch size of 3 and randomly cropped the image to
size H = 256, W = 512. All networks are optimized using
Adam (1 = 0.9, B2 =0.999) [18] with constant learning rate
set to 0.001 for the first 250 epochs and 0.0005 for another
250 epochs. We measure n-px-err, the percentage of pixels
with error bigger than n pixels. First, we prove the validity of
top-k argmin operation by ablation study. Next, we show that
RTSNet generates high quality of results in a fraction of the
time.

3.1. Ablation study for top-k argmin method

k=5
5.04

k=50 | k=96
5.37 5.37

k=192
5.37

k=1| k=3
4.95

2px-err

Table 1: Influence of k used for fop-k argmin operation.

Here we study the influence of value k& which is used for
top-k argmin operation. We divided the whole training dataset
into 80% training set and 20% validation set and 2px-err is
measured on the validation set. As shown in Table 1, our
network shows the best performance when k set to 3. This
is caused by the reason that k=1 cannot estimate sub-pixel
disparity while k=3 can. The reason for k=3 performs bet-
ter than k over 3 is due to multi-modal distribution problem.
We demonstrate that when k is as small as 3, our network is
less affected by multi-modal distribution problem and able to
regress sub-pixel disparity.

3.2. Quantitative and Qualitative Results

All Pixels (%) .
Method Di-bg | Di-fe ( il Runtime

MC-CNN [1] 2.89 8.88 3.89 67s
GC-Net [0] 2.21 6.16 2.87 0.9s
PSMNet [7] 1.86 4.62 2.32 0.4s
PDSNet [12] 2.29 4.05 2.58 0.5s
MADNet [19] 3.75 9.20 4.66 0.02s
DeepCostAggr [20] | 5.34 11.35 6.34 0.03s
RTSNet(Ours) 2.86 6.19 3.41 0.02s

Table 2: Performance comparison on KITTI 2015 online-
leaderboard of our network with other state-of-the-art net-
works. In table bg means background regions, fg means fore-
ground regions while all means all pixels. The result shows
3px-err.

(a) Input Image

(b) RTSNet (ours, 0.02s)
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(c) MADNet (0.02s) [19]
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(d) DeepCostAggr (0.03s) [20]

Fig. 4: Predicted disparity maps of our network and other
networks with similar runtime on KITTI 2015 test image.

As listed in Table 2, our network achieves considerable
gain of accuracy in a fraction of the time it would typically
take. In Fig. 4 we demonstrate that RTSNet generates the
most accurate disparity map compared to all other networks
with similar runtime.

4. CONCLUSION

We propose RTSNet, a novel real-time stereo matching net-
work with high level of accuracy. We form a small cost vol-
ume to gain speed. However, the down-scaled cost volume
leads to accuracy degradation at areas of thin structures and
homogeneous regions. We overcome this limitation by using
focal loss that handles hard negative examples. Our proposed
top-k argmin operation is able to regress sub-pixel disparity
and also robust in multi-modal distribution problem. Experi-
mental results demonstrate that our proposed network outper-
forms all other networks with similar runtime.
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