Fast Adaptive Bilateral Filtering of Color Images

Ruturaj G. Gavaskar and Kunal N. Chaudhury

Department of Electrical Engineering, Indian Institute of Science

IEEE International Conference on Image Processing, Taipei (2019)

Classical bilateral filter

Nonlinear edge-preserving smoothing¹:

$$g(i) = \eta(i)^{-1} \sum_{j \in \Omega} \omega(j) \phi(f(i-j) - f(i)) f(i-j),$$

$$\eta(i) = \sum_{j \in \Omega} \omega(j) \phi(f(i-j) - f(i)),$$

where

f and **g** are the input and output RGB images.

•
$$f(i)$$
 and $g(i)$ are vectors.

• ω and ϕ = Gaussian kernels with variance ρ^2 and σ^2 .

¹Tomasi and Manduchi, 1998

Role of σ

Input.

Output, $\sigma = 200$.

Weights

Weights

Adaptation of σ

- σ (width of range kernel) controls the extent of blurring.
- A fixed σ either over or under smooths.
- Useful for controlling the blur in different regions, e.g., more blur to remove coarse textures in images.
- σ is allowed to change at each pixel (a rule is required).
- Proposed for a couple of applications (for grayscale images):
 - Image sharpening².
 - JPEG deblocking³.

²Zhang and Allebach, 2008. ³Zhang and Gunturk, 2009.

Adaptive bilateral filter (ABF)

Make the width of the range kernel a function of *i*.

• Moreover, allow center⁴ to be different from f(i).

$$g(i) = \eta(i)^{-1} \sum_{j \in \Omega} \omega(j) \phi_i (f(i-j) - \theta(i)) f(i-j),$$

$$\eta(i) = \sum_{j \in \Omega} \omega(j) \phi_i (f(i-j) - \theta(i)) f(i-j).$$

⁴Zhang and Allebach, 2008.

- $O(\rho^2)$ computations per pixel.
- Higher ρ (window size) is used for higher-resolution images.
- e.g. 60 seconds for a 2 megapixel image on a CPU.
- Real-time implementation is challenging.
- Fast approximation: Approximate the original formula and hope to speed it up, without appreciable loss of visual information.

Fast bilateral filtering

- Several fast algorithms for classical bilateral filtering (gray/color).
- Complexity does not scale with filter width (O(1) implementation).
- Almost all fundamentally require the range kernel to be fixed.
- Filtering reduced to fast convolutions by approximating the range kernel.
- Rules out extension to ABF (range kernel is changing).

Our contribution

- Novel O(1) algorithm for fast ABF of color images.
- Builds on a recently proposed algorithm for gray images⁵.
- Trivial channel-by-channel extension to color images (3X cost).
- Filtering in RGB space?
- As explained later, this poses technical challenges.
- Core idea: Express filtering using local (weighted) histograms⁶.

⁵Gavaskar and Chaudhury, 2019.

⁶Mozerov and van de Weijer, 2015.

Local weighted histogram

Local histogram at pixel i:

$$h_i(t) = \sum_{j \in \Omega} \delta(f(i-j)-t), \quad t \in \{0,\ldots,255\}^3.$$

►
$$\boldsymbol{t} = (t_r, t_g, t_b)$$
 and $\delta(\boldsymbol{t}) = \delta(t_r) \ \delta(t_g) \ \delta(t_b)$.

Local weighted histogram at pixel i:

$$h_{\boldsymbol{i}}(\boldsymbol{t}) = \sum_{\boldsymbol{j}\in\Omega} \omega(\boldsymbol{j}) \ \delta(\boldsymbol{f}(\boldsymbol{i}-\boldsymbol{j})-\boldsymbol{t}), \quad \boldsymbol{t}\in\{0,\ldots,255\}^3.$$

Interpretation: Spatially-weighted frequency of RGB value t.

ABF in terms of local weighted histograms:

$$\boldsymbol{g}(\boldsymbol{i}) = \eta(\boldsymbol{i})^{-1} \sum_{\boldsymbol{t}} \boldsymbol{t} h_{\boldsymbol{i}}(\boldsymbol{t}) \phi_{\boldsymbol{i}} \big(\boldsymbol{t} - \boldsymbol{\theta}(\boldsymbol{i}) \big),$$

and

$$\eta(\mathbf{i}) = \sum_{\mathbf{t}} h_{\mathbf{i}}(\mathbf{t}) \phi_{\mathbf{i}}(\mathbf{t} - \boldsymbol{\theta}(\mathbf{i})),$$

where sum is over RGB values in the neighborhood of i.

Background

- ► ABF for grayscale images can be similarly reformulated.
- In grayscale, $h_i(t)$ is a function of a scalar variable.
- For fast algorithm, $h_i(t)$ is approximated using polynomials⁷.
- This gave closed-form Gaussian integrals.
- Histogram approximation using fast convolutions (moment matching).
- For color images, $h_i(t)$ is a function of a vector variable.
- Polynomial approximation is bad due to sparse data.

⁷Gavaskar and Chaudhury, 2019.

Background

Motivated by the approach in Mozerov and van de Weijer⁸:

▶ $h_i(t)$ is constant over an interval $[a_i, b_i]$ (in \mathbb{R}^3).

▶ *h_i*(*t*) is zero elsewhere.

Summations are replaced by line integrals:

$$\hat{\mathbf{g}}(\mathbf{i}) = \hat{\eta}(\mathbf{i})^{-1} \int_{[\mathbf{a}_i, \mathbf{b}_i]} \mathbf{t} \, \phi_i(\mathbf{t} - \boldsymbol{\theta}(\mathbf{i})) d\mathbf{t}$$
$$\hat{\eta}(\mathbf{i}) = \int_{[\mathbf{a}_i, \mathbf{b}_i]} \phi_i(\mathbf{t} - \boldsymbol{\theta}(\mathbf{i})) d\mathbf{t}.$$

- The integrals, and hence the filter, have a closed-form expression.
- By clever choice of the interval, the computation becomes O(1). ⁸Mozerov and van de Weijer, 2015.

Novelty of our proposal

In Mozerov and van de Weijer, the interval was chosen to be

passing through f(i).

• having direction $\bar{f}(i) - f(i)$, where $\bar{f}(i) =$ mean value.

• This makes the algorithm O(1), but is an ad-hoc choice.

- We choose the interval such that it captures linear trend of data.
- To do this, we use the covariance of the local weighted histogram.
- Our proposed algorithm is also O(1).

Choice of interval

Covariance matrix:

$$\mathsf{C}_{\boldsymbol{i}} = \sum_{\boldsymbol{j}\in\Omega} \omega(\boldsymbol{j}) \big(\boldsymbol{f}(\boldsymbol{i}-\boldsymbol{j}) - \bar{\boldsymbol{f}}(\boldsymbol{i}) \big) \big(\boldsymbol{f}(\boldsymbol{i}-\boldsymbol{j}) - \bar{\boldsymbol{f}}(\boldsymbol{i}) \big)^{\top}.$$

- Direction of [a_i, b_i] = Largest eigenvector of the covariance matrix.
- This should give "best" linear approximation of the set of data points.

Proposal:

$$\begin{split} [\pmb{a_i}, \pmb{b_i}] &= \left[\bar{\pmb{f}}(\pmb{i}) - c\sqrt{\lambda_i} \; \pmb{q_i}, \bar{\pmb{f}}(\pmb{i}) + c\sqrt{\lambda_i} \; \pmb{q_i} \right];\\ (\lambda_i, \pmb{q_i}) &= \text{Top eigenpair of } \mathsf{C}_i,\\ c &= \text{Positive constant, decides length of the interval.} \end{split}$$

Fast computation of interval endpoints

▶ Recall:
$$\mathbf{a}_i = \overline{\mathbf{f}}(\mathbf{i}) - c\sqrt{\lambda_i} \mathbf{q}_i$$
, $\mathbf{b}_i = \overline{\mathbf{f}}(\mathbf{i}) + c\sqrt{\lambda_i} \mathbf{q}_i$.

- We must find a fast method to compute the end points.
- O(1) Gaussian convolutions come to our rescue.
- $\bar{f}(i) = \omega * f(i) \rightarrow 3$ Gaussian convolutions.
- (p,q)th entry of $C_i = \omega * (f_p f_q)(i) (\omega * f_p(i)) (\omega * f_q(i)).$
- 6 additional Gaussian convolutions to compute C_i's.

Fast computation of interval endpoints

• (λ_i, q_i) computed using power iterations method.

Power iterations:

• Initialize q_i as unit vector along $\bar{f}(i) - f(i)$.

• Iterate:
$$\boldsymbol{q}_i \leftarrow C_i \boldsymbol{q}_i / \| \boldsymbol{q}_i \|$$
.

In practice, just one iteration is enough.

$$\boldsymbol{\succ} \ \lambda_{\boldsymbol{i}} = \boldsymbol{q}_{\boldsymbol{i}}^{\mathsf{T}} \mathsf{C}_{\boldsymbol{i}} \boldsymbol{q}_{\boldsymbol{i}}.$$

Overall, computation of a_i, b_i requires O(1) operations.

⁹Direction used in Mozerov and van de Weijer, 2015.

► Recall:

$$\hat{\mathbf{g}}(\mathbf{i}) = \hat{\eta}(\mathbf{i})^{-1} \int_{[\mathbf{a}_i, \mathbf{b}_i]} \mathbf{t} \,\phi_{\mathbf{i}}(\mathbf{t} - \boldsymbol{\theta}(\mathbf{i})) d\mathbf{t},$$
$$\hat{\eta}(\mathbf{i}) = \int_{[\mathbf{a}_i, \mathbf{b}_i]} \phi_{\mathbf{i}}(\mathbf{t} - \boldsymbol{\theta}(\mathbf{i})) d\mathbf{t}.$$

- The integrals have closed-form expressions in terms of a_i, b_i .
- This was made possible due to the nature of the approximation.
- As computation of a_i, b_i is O(1), computation of ĝ(i) becomes O(1).

Filter approximation

Closed-form expression (mean + first-order correction):

$$\hat{\boldsymbol{g}}(\boldsymbol{i}) = ar{\boldsymbol{f}}(\boldsymbol{i}) + \left(2\left(\beta - \alpha \boldsymbol{e}_1 \boldsymbol{e}_2^{-1}\right) - 1\right) \boldsymbol{c} \sqrt{\lambda_{\boldsymbol{i}}} \boldsymbol{q}_{\boldsymbol{i}},$$

where

$$\begin{aligned} \alpha &= \sigma(\mathbf{i})/c\sqrt{2\pi\lambda_{\mathbf{i}}},\\ \beta &= \frac{1}{2c\sqrt{\lambda_{\mathbf{i}}}}\mathbf{q}_{\mathbf{i}}^{\mathsf{T}}(\boldsymbol{\theta}(\mathbf{i}) - \bar{\mathbf{f}}(\mathbf{i}) + c\sqrt{\lambda_{\mathbf{i}}}\mathbf{q}_{\mathbf{i}}),\\ e_{1} &= \exp\left(-\frac{(1-\beta)^{2}}{\pi\alpha^{2}}\right) - \exp\left(-\frac{\beta^{2}}{\pi\alpha^{2}}\right),\\ e_{2} &= \exp\left(\frac{1-\beta}{\sqrt{\pi\alpha}}\right) - \exp\left(-\frac{\beta}{\sqrt{\pi\alpha}}\right).\end{aligned}$$

• Main point: All computations are O(1).

Summary of the algorithm

- 1. Compute $\omega * (f_p f_q)$, $\omega * f_p$ for p, q = 1, 2, 3 using O(1) convolutions.
- 2. For each pixel *i*,

2.1 Populate C_i using the above convolved quantities.

- 2.2 Estimate dominant eigenpair (λ_i, q_i) by power iterations method.
- 2.3 Compute α , β , e_1 , e_2 in the previous slide.
- 2.4 Compute $\hat{g}(i)$ using the formula in the previous slide.

Dominant cost = 9 Gaussian convolutions.

Brief overview:

- Objective: Enhance details, but not to the same extent everywhere.
- More enhancement in regions which are more visually salient.
- Can be accomplished using the ABF¹⁰.
- $\sigma(i)$ is decided using a saliency map.
- $\blacktriangleright \ \theta(i) = f(i).$
- ▶ We use our proposed algorithm for color filtering.

¹⁰Ghosh et al., 2019.

Input (640 \times 960).

Enhanced, $\rho = 5$.

Saliency map.

 σ map.

Timings: Brute-force = 27 sec., Proposed = 1.4 sec.

Brief overview:

- Objective: Smooth out blocking artifacts in JPEG-compressed images.
- ► For grayscale images, can be accomplished using ABF¹¹¹².
- We extend the same idea to color images.
- $\sigma(i)$ is decided using a technique proposed previously ¹¹.
- $\blacktriangleright \ \theta(i) = f(i).$
- We use our proposed algorithm for filtering.

¹¹ Zhang and Gunturk, 2009.

¹²Gavaskar and Chaudhury, 2019.

Timings: Brute-force = 8.4 sec., Proposed = 0.6 sec.

Brief overview:

- Objective: Sharpen a blurred image containing fine noise grains.
- ▶ For grayscale images, can be accomplished using ABF¹³.
- We extend the idea to color images.
- Both σ(i) and θ(i) are decided using previously proposed techniques.
- We use our proposed algorithm for filtering.

¹³Zhang and Allebach, 2008.

Timings: Brute-force = 62 sec., Proposed = 4.4 sec.

Conclusion

- Proposed O(1) algorithm for adaptive bilateral filtering of color images.
- First such algorithm to the best of our knowledge.
- Core idea: Approximate local histogram as uniform along direction of maximum variance.
- Achieves about 15× speedup with reasonable accuracy.
- Useful for detail enhancement, sharpening, and deblocking.
- Better accuracy and extension to non-Gaussian kernels?

Research supported by EMR grant SERB/F/6047/2016-2017 from DST-SERB, Government of India.

References I

- C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," Proc. IEEE International Conference on Computer Vision, pp. 839–846, 1998.
- B. Zhang and J. P. Allebach, "Adaptive bilateral filter for sharpness enhancement and noise removal," IEEE Transactions on Image Processing, vol. 17, no. 5, pp. 664–678, 2008.
- K. Sugimoto and S.-I. Kamata, "Compressive bilateral filtering," IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3357–3369, 2015.
- M. G. Mozerov and J. van de Weijer, "Global color sparseness and a local statistics prior for fast bilateral filtering," IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5842–5853, 2015.
- R. Deriche, "Recursively implementing the Gaussian and its derivatives," Research Report RR-1893, INRIA, 1993.

References II

- I. T. Young and L. J. van Vliet, "Recursive implementation of the Gaussian filter," Signal Processing, vol. 44, pp. 139–151, 1995.
- S. Ghosh, R. G. Gavaskar, and K. N. Chaudhury, "Saliency guided image detail enhancement," Proc. National Conference on Communications, pp. 1–6, 2019.
- M. Zhang and B. K. Gunturk, "Compression artifact reduction with adaptive bilateral filtering," Proc. SPIE Visual Communications and Image Processing, vol. 7257, 2009.
- R. G. Gavaskar and K. N. Chaudhury, "Fast adaptive bilateral filtering," IEEE Transactions on Image Processing, vol. 28, no. 2, pp. 779–790, 2019.

Thanks for listening!