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Classical bilateral filter

Nonlinear edge-preserving smoothing1:

g(i ) = η(i )−1
∑
j∈Ω

ω(j )φ
(
f (i − j )− f (i )

)
f (i − j ),

η(i ) =
∑
j∈Ω

ω(j )φ
(
f (i − j )− f (i )

)
,

where
I f and g are the input and output RGB images.

I f (i ) and g(i ) are vectors.

I ω and φ = Gaussian kernels with variance ρ2 and σ2.

I Ω = Neighborhood for averaging.

1Tomasi and Manduchi, 1998
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Role of σ

Input. Output, σ = 30. Output, σ = 200.

Weights Weights
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Adaptation of σ

I σ (width of range kernel) controls the extent of blurring.

I A fixed σ either over or under smooths.

I Useful for controlling the blur in different regions, e.g., more
blur to remove coarse textures in images.

I σ is allowed to change at each pixel (a rule is required).

I Proposed for a couple of applications (for grayscale images):
I Image sharpening2.

I JPEG deblocking3.

2Zhang and Allebach, 2008.
3Zhang and Gunturk, 2009.

3



Adaptive bilateral filter (ABF)

I Make the width of the range kernel a function of i .

I Moreover, allow center4 to be different from f (i ).

g(i ) = η(i )−1
∑
j∈Ω

ω(j ) φi
(
f (i − j )− θ(i )

)
f (i − j ),

η(i ) =
∑
j∈Ω

ω(j ) φi
(
f (i − j )− θ(i )

)
f (i − j ).

I However, a fixed spatial kernel is used.

4Zhang and Allebach, 2008.
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Computation cost

I O(ρ2) computations per pixel.

I Higher ρ (window size) is used for higher-resolution images.

I e.g. 60 seconds for a 2 megapixel image on a CPU.

I Real-time implementation is challenging.

I Fast approximation: Approximate the original formula and hope
to speed it up, without appreciable loss of visual information.
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Fast bilateral filtering

I Several fast algorithms for classical bilateral filtering
(gray/color).

I Complexity does not scale with filter width (O(1)
implementation).

I Almost all fundamentally require the range kernel to be fixed.

I Filtering reduced to fast convolutions by approximating the
range kernel.

I Rules out extension to ABF (range kernel is changing).
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Our contribution

I Novel O(1) algorithm for fast ABF of color images.

I Builds on a recently proposed algorithm for gray images5.

I Trivial channel-by-channel extension to color images (3X cost).

I Filtering in RGB space?

I As explained later, this poses technical challenges.

I Core idea: Express filtering using local (weighted) histograms6.

5Gavaskar and Chaudhury, 2019.
6Mozerov and van de Weijer, 2015.
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Local weighted histogram

I Local histogram at pixel i :

hi (t) =
∑
j∈Ω

δ
(
f (i − j )− t

)
, t ∈ {0, . . . , 255}3.

I t = (tr , tg , tb) and δ(t) = δ(tr ) δ(tg ) δ(tb).

I Local weighted histogram at pixel i :

hi (t) =
∑
j∈Ω

ω(j ) δ
(
f (i − j )− t

)
, t ∈ {0, . . . , 255}3.

I Interpretation: Spatially-weighted frequency of RGB value t.
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Reformulation of ABF

ABF in terms of local weighted histograms:

g(i ) = η(i )−1
∑
t

thi (t)φi
(
t − θ(i )

)
,

and

η(i ) =
∑
t

hi (t)φi
(
t − θ(i )

)
,

where sum is over RGB values in the neighborhood of i .
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Background

I ABF for grayscale images can be similarly reformulated.

I In grayscale, hi (t) is a function of a scalar variable.

I For fast algorithm, hi (t) is approximated using polynomials7.

I This gave closed-form Gaussian integrals.

I Histogram approximation using fast convolutions (moment
matching).

I For color images, hi (t) is a function of a vector variable.

I Polynomial approximation is bad due to sparse data.

7Gavaskar and Chaudhury, 2019.
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Background

I Motivated by the approach in Mozerov and van de Weijer8:
I hi (t) is constant over an interval [ai ,bi ] (in R3).

I hi (t) is zero elsewhere.

I Summations are replaced by line integrals:

ĝ(i ) = η̂(i )−1
∫

[ai ,bi ]

t φi
(
t − θ(i )

)
dt,

η̂(i ) =

∫
[ai ,bi ]

φi
(
t − θ(i )

)
dt.

I The integrals, and hence the filter, have a closed-form
expression.

I By clever choice of the interval, the computation becomes O(1).
8Mozerov and van de Weijer, 2015.
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Novelty of our proposal

I In Mozerov and van de Weijer, the interval was chosen to be
I passing through f (i ).

I having direction f̄ (i )− f (i ), where f̄ (i ) = mean value.

I This makes the algorithm O(1), but is an ad-hoc choice.

I We choose the interval such that it captures linear trend of
data.

I To do this, we use the covariance of the local weighted
histogram.

I Our proposed algorithm is also O(1).
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Choice of interval

I Covariance matrix:

Ci =
∑
j∈Ω

ω(j )
(
f (i − j )− f̄ (i )

)(
f (i − j )− f̄ (i )

)>
.

I Direction of [ai ,bi ] = Largest eigenvector of the covariance
matrix.

I This should give “best” linear approximation of the set of data
points.

I Proposal:

[ai ,bi ] =
[
f̄ (i )− c

√
λi qi , f̄ (i ) + c

√
λi qi

]
;

(λi ,qi ) = Top eigenpair of Ci ,

c = Positive constant, decides length of the interval.
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Fast computation of interval endpoints

I Recall: ai = f̄ (i )− c
√
λi qi , bi = f̄ (i ) + c

√
λi qi .

I We must find a fast method to compute the end points.

I O(1) Gaussian convolutions come to our rescue.

I f̄ (i ) = ω ∗ f (i )→ 3 Gaussian convolutions.

I (p, q)th entry of Ci = ω ∗ (fpfq)(i)−
(
ω ∗ fp(i)

) (
ω ∗ fq(i)

)
.

I 6 additional Gaussian convolutions to compute Ci ’s.
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Fast computation of interval endpoints

I (λi ,qi ) computed using power iterations method.

I Power iterations:
I Initialize qi as unit vector along f̄ (i )− f (i ).9

I Iterate: qi ← Ciqi/‖qi‖.

I In practice, just one iteration is enough.

I λi = q>i Ciqi .

I Overall, computation of ai ,bi requires O(1) operations.

9Direction used in Mozerov and van de Weijer, 2015.
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Filter approximation

I Recall:

ĝ(i ) = η̂(i )−1
∫

[ai ,bi ]
t φi

(
t − θ(i )

)
dt,

η̂(i ) =

∫
[ai ,bi ]

φi
(
t − θ(i )

)
dt.

I The integrals have closed-form expressions in terms of ai ,bi .

I This was made possible due to the nature of the approximation.

I As computation of ai ,bi is O(1), computation of ĝ(i ) becomes
O(1).
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Filter approximation

I Closed-form expression (mean + first-order correction):

ĝ(i ) = f̄ (i ) +
(
2
(
β − αe1e−1

2
)
− 1
)
c
√
λiqi ,

where

α = σ(i )/c
√

2πλi ,

β =
1

2c
√
λi

q>i
(
θ(i )− f̄ (i ) + c

√
λiqi

)
,

e1 = exp

(
−(1− β)2

πα2

)
− exp

(
− β2

πα2

)
,

e2 = erf

(
1− β√
πα

)
− erf

(
− β√

πα

)
.

I Main point: All computations are O(1).
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Summary of the algorithm

1. Compute ω ∗ (fpfq), ω ∗ fp for p, q = 1, 2, 3 using O(1)
convolutions.

2. For each pixel i ,
2.1 Populate Ci using the above convolved quantities.

2.2 Estimate dominant eigenpair (λi ,qi ) by power iterations
method.

2.3 Compute α, β, e1, e2 in the previous slide.

2.4 Compute ĝ(i ) using the formula in the previous slide.

Dominant cost = 9 Gaussian convolutions.
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Application: Adaptive detail enhancement

Brief overview:

I Objective: Enhance details, but not to the same extent
everywhere.

I More enhancement in regions which are more visually salient.

I Can be accomplished using the ABF10.

I σ(i ) is decided using a saliency map.

I θ(i ) = f (i ).

I We use our proposed algorithm for color filtering.

10Ghosh et al., 2019.
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Input (640× 960). Enhanced, ρ = 5.

Saliency map.

10

20

30

40

50

60

70

σ map.

Timings: Brute-force = 27 sec., Proposed = 1.4 sec.
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Application: JPEG deblocking

Brief overview:

I Objective: Smooth out blocking artifacts in JPEG-compressed
images.

I For grayscale images, can be accomplished using ABF1112.

I We extend the same idea to color images.

I σ(i ) is decided using a technique proposed previously 11.

I θ(i ) = f (i ).

I We use our proposed algorithm for filtering.

11 Zhang and Gunturk, 2009.
12Gavaskar and Chaudhury, 2019.
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Input (512× 512). Deblocked, ρ = 4.
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160

σ map. Original.

Timings: Brute-force = 8.4 sec., Proposed = 0.6 sec.
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Application: Sharpening

Brief overview:

I Objective: Sharpen a blurred image containing fine noise grains.

I For grayscale images, can be accomplished using ABF13.

I We extend the idea to color images.

I Both σ(i ) and θ(i ) are decided using previously proposed
techniques.

I We use our proposed algorithm for filtering.

13Zhang and Allebach, 2008.
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Input (1600× 1200). Sharpened, ρ = 4.
23
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σ map.

Timings: Brute-force = 62 sec., Proposed = 4.4 sec.
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Conclusion

I Proposed O(1) algorithm for adaptive bilateral filtering of color
images.

I First such algorithm to the best of our knowledge.

I Core idea: Approximate local histogram as uniform along
direction of maximum variance.

I Achieves about 15× speedup with reasonable accuracy.

I Useful for detail enhancement, sharpening, and deblocking.

I Better accuracy and extension to non-Gaussian kernels?

Research supported by EMR grant SERB/F/6047/2016-2017 from
DST-SERB, Government of India.
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Thanks for listening!


