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Classical bilateral filter

Nonlinear edge-preserving smoothing!:

g(i) = n()~ Y _w(i)e(F(i — ) — F(D) Fi - J),

JjeQ
(i) =Y _w(i)e(F(i —j) — (i),
JEQ
where

» f and g are the input and output RGB images.
» f(i) and g(i) are vectors.
» w and ¢ = Gaussian kernels with variance p? and o2.

» Q = Neighborhood for averaging.

Tomasi and Manduchi, 1998



Role of &

Input.

Output, o = 30. Output, o = 200.

Weights Weights
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Adaptation of o

» o (width of range kernel) controls the extent of blurring.
» A fixed o either over or under smooths.

» Useful for controlling the blur in different regions, e.g., more
blur to remove coarse textures in images.

» o is allowed to change at each pixel (a rule is required).

» Proposed for a couple of applications (for grayscale images):

> Image sharpening?.

» JPEG deblocking®.

2Zhang and Allebach, 2008.
3Zhang and Gunturk, 2009.



Adaptive bilateral filter (ABF)

» Make the width of the range kernel a function of i.

» Moreover, allow center* to be different from £(i).
g(i) = (i)™ D _wli) &i(F(i — ) — 0())F(i —J).
JjeQ

(i) =Y wli) ¢i(F(i —J) = 6())F(i —J)-

JEQ

> However, a fixed spatial kernel is used.

4Zhang and Allebach, 2008.



Computation cost

» O(p?) computations per pixel.

» Higher p (window size) is used for higher-resolution images.
» e.g. 60 seconds for a 2 megapixel image on a CPU.

» Real-time implementation is challenging.

» Fast approximation: Approximate the original formula and hope
to speed it up, without appreciable loss of visual information.



Fast bilateral filtering

» Several fast algorithms for classical bilateral filtering
(gray/color).

» Complexity does not scale with filter width (O(1)
implementation).

» Almost all fundamentally require the range kernel to be fixed.

» Filtering reduced to fast convolutions by approximating the
range kernel.

» Rules out extension to ABF (range kernel is changing).



Our contribution

» Novel O(1) algorithm for fast ABF of color images.

» Builds on a recently proposed algorithm for gray images®.

v

Trivial channel-by-channel extension to color images (3X cost).

v

Filtering in RGB space?

> As explained later, this poses technical challenges.

» Core idea: Express filtering using local (weighted) histograms®.

®Gavaskar and Chaudhury, 2019.
5Mozerov and van de Weijer, 2015.



Local weighted histogram

» Local histogram at pixel i:

hi(e) = 6(F(i—j)—t), te{0,...,255}°.

JjeQ
> t = (t,, tg, tp) and 6(t) = 5(t,) 0(tg) 6(tp).
» Local weighted histogram at pixel i:

hi()) = w(i) 6(F(i —j)—t), tefo,..., 255}

JEQ

» Interpretation: Spatially-weighted frequency of RGB value t.



Reformulation of ABF

ABF in terms of local weighted histograms:
12 thi(t)ei (& — 6(i)),
and

(i) = hi()si(t — 6(i)),

where sum is over RGB values in the neighborhood of i.



Background

» ABF for grayscale images can be similarly reformulated.

» In grayscale, h;(t) is a function of a scalar variable.

» For fast algorithm, h;(t) is approximated using polynomials’.

» This gave closed-form Gaussian integrals.

» Histogram approximation using fast convolutions (moment
matching).

» For color images, h;(t) is a function of a vector variable.

» Polynomial approximation is bad due to sparse data.

“Gavaskar and Chaudhury, 2019.
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Background

» Motivated by the approach in Mozerov and van de Weijer®:

> h;(t) is constant over an interval [a;, b;] (in R3).
> h;(t) is zero elsewhere.

» Summations are replaced by line integrals:
g(i) = ﬁ(i)*l/ t ¢;i(t—0(i))dt,
[ai,bi]

gZS,'(t - B(i))dt.

[ai,bi]

A(i)

» The integrals, and hence the filter, have a closed-form
expression.

» By clever choice of the interval, the computation becomes O(1).

8Mozerov and van de Weijer, 2015.
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Novelty of our proposal

» In Mozerov and van de Weijer, the interval was chosen to be

» passing through ().
> having direction f(i) — F(i), where f(i) = mean value.
» This makes the algorithm O(1), but is an ad-hoc choice.

» We choose the interval such that it captures linear trend of
data.

» To do this, we use the covariance of the local weighted
histogram.

» Our proposed algorithm is also O(1).
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Choice of interval

» Covariance matrix:

. . . =, . . . - o\T
Ci= > w()(F(i —j) — F(i)) (F(i — ) — F(D)) .
JEQ
» Direction of [a;, b;] = Largest eigenvector of the covariance
matrix.

» This should give “best” linear approximation of the set of data
points.

» Proposal:
[a;, bi] = [f(i) — Vi qi, F(i) + e/ N Qi] ;

(Ai, i) = Top eigenpair of C;,
¢ = Positive constant, decides length of the interval.



® Mean
@ Center
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Fast computation of interval endpoints

> Recall: a; = F(i) — cv/A; qi, by = F(i) + ¢/ )i q;.
» We must find a fast method to compute the end points.
» O(1) Gaussian convolutions come to our rescue.

> f(i) = w* f(i) — 3 Gaussian convolutions.

> (p. q)th entry of C; = wx (£pfq) (i) — (w * fo(i)) (w * f(7)).

» 6 additional Gaussian convolutions to compute C;'s.

=15



Fast computation of interval endpoints

» (), g;) computed using power iterations method.

» Power iterations:

> Initialize g; as unit vector along F(i) — f(i).°
> lterate: q; < C;qi/| qil|.

» In practice, just one iteration is enough.

> \i =q;Ciq;.

» Overall, computation of a;, b; requires O(1) operations.

°Direction used in Mozerov and van de Weijer, 2015.
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Filter approximation

» Recall:

&(i) = ﬁ')1/ £ it — 0(i))dt,

/ 6(i))dt.

» The integrals have closed-form expressions in terms of a;, b;.

» This was made possible due to the nature of the approximation.

» As computation of a;, b; is O(1), computation of g(i) becomes
O(1).
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Filter approximation

» Closed-form expression (mean + first-order correction):

g(i)=f(i)+ (2 (ﬁ — aelez_l) - 1)c\/)\>,-q,-,

where

o = o)/ e/2r:
b= \Fq,( (i) -
NN ECEL. ) e (-2).
o) ()

» Main point: All computations are O(1).
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Summary of the algorithm

1. Compute w * (fpfy), w* f, for p,q =1,2,3 using O(1)
convolutions.

2. For each pixel i,

2.1 Populate C; using the above convolved quantities.

2.2 Estimate dominant eigenpair (\;, g;) by power iterations
method.

2.3 Compute «, 3, e1, e in the previous slide.

2.4 Compute g(i) using the formula in the previous slide.

Dominant cost = 9 Gaussian convolutions.

=19



Application: Adaptive detail enhancement

Brief overview:

» Objective: Enhance details, but not to the same extent
everywhere.

» More enhancement in regions which are more visually salient.
» Can be accomplished using the ABF10.

» o(i) is decided using a saliency map.

» We use our proposed algorithm for color filtering.

Ghosh et al., 20109.



Input (640 x 960). Enhanced, p = 5.

Saliency map. o map.

Timings: Brute-force = 27 sec., Proposed = 1.4 sec.



Application: JPEG deblocking

Brief overview:

» Objective: Smooth out blocking artifacts in JPEG-compressed
images.

» For grayscale images, can be accomplished using ABF!112.
» We extend the same idea to color images.

» o (i) is decided using a technique proposed previously *.

» We use our proposed algorithm for filtering.

1 Zhang and Gunturk, 2009.
12Gavaskar and Chaudhury, 2019.
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g map. Original.

Timings: Brute-force = 8.4 sec., Proposed = 0.6 sec.
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Application: Sharpening

Brief overview:

» Objective: Sharpen a blurred image containing fine noise grains.
» For grayscale images, can be accomplished using ABF!3,
» We extend the idea to color images.

» Both o(i) and 8(i) are decided using previously proposed
techniques.

» We use our proposed algorithm for filtering.

13Zhang and Allebach, 2008.



o map.

Timings: Brute-force = 62 sec., Proposed = 4.4 sec.
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Conclusion

» Proposed O(1) algorithm for adaptive bilateral filtering of color
images.

» First such algorithm to the best of our knowledge.

» Core idea: Approximate local histogram as uniform along
direction of maximum variance.

» Achieves about 15x speedup with reasonable accuracy.
» Useful for detail enhancement, sharpening, and deblocking.

> Better accuracy and extension to non-Gaussian kernels?

Research supported by EMR grant SERB/F/6047/2016-2017 from
DST-SERB, Government of India.
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Thanks for listening!



