
Fast Adaptive Bilateral Filtering of Color Images

Ruturaj G. Gavaskar and Kunal N. Chaudhury

Department of Electrical Engineering,
Indian Institute of Science

IEEE International Conference on Image Processing, Taipei (2019)



Classical bilateral filter

Nonlinear edge-preserving smoothing1:

g(i ) = η(i )−1
∑
j∈Ω

ω(j )φ
(
f (i − j )− f (i )

)
f (i − j ),

η(i ) =
∑
j∈Ω

ω(j )φ
(
f (i − j )− f (i )

)
,

where
I f and g are the input and output RGB images.

I f (i ) and g(i ) are vectors.

I ω and φ = Gaussian kernels with variance ρ2 and σ2.

I Ω = Neighborhood for averaging.

1Tomasi and Manduchi, 1998
1



Role of σ

Input. Output, σ = 30. Output, σ = 200.

Weights Weights

2



Adaptation of σ

I σ (width of range kernel) controls the extent of blurring.

I A fixed σ either over or under smooths.

I Useful for controlling the blur in different regions, e.g., more
blur to remove coarse textures in images.

I σ is allowed to change at each pixel (a rule is required).

I Proposed for a couple of applications (for grayscale images):
I Image sharpening2.

I JPEG deblocking3.

2Zhang and Allebach, 2008.
3Zhang and Gunturk, 2009.

3



Adaptive bilateral filter (ABF)

I Make the width of the range kernel a function of i .

I Moreover, allow center4 to be different from f (i ).

g(i ) = η(i )−1
∑
j∈Ω

ω(j ) φi
(
f (i − j )− θ(i )

)
f (i − j ),

η(i ) =
∑
j∈Ω

ω(j ) φi
(
f (i − j )− θ(i )

)
f (i − j ).

I However, a fixed spatial kernel is used.

4Zhang and Allebach, 2008.
4



Computation cost

I O(ρ2) computations per pixel.

I Higher ρ (window size) is used for higher-resolution images.

I e.g. 60 seconds for a 2 megapixel image on a CPU.

I Real-time implementation is challenging.

I Fast approximation: Approximate the original formula and hope
to speed it up, without appreciable loss of visual information.

5



Fast bilateral filtering

I Several fast algorithms for classical bilateral filtering
(gray/color).

I Complexity does not scale with filter width (O(1)
implementation).

I Almost all fundamentally require the range kernel to be fixed.

I Filtering reduced to fast convolutions by approximating the
range kernel.

I Rules out extension to ABF (range kernel is changing).

6



Our contribution

I Novel O(1) algorithm for fast ABF of color images.

I Builds on a recently proposed algorithm for gray images5.

I Trivial channel-by-channel extension to color images (3X cost).

I Filtering in RGB space?

I As explained later, this poses technical challenges.

I Core idea: Express filtering using local (weighted) histograms6.

5Gavaskar and Chaudhury, 2019.
6Mozerov and van de Weijer, 2015.

7



Local weighted histogram

I Local histogram at pixel i :

hi (t) =
∑
j∈Ω

δ
(
f (i − j )− t

)
, t ∈ {0, . . . , 255}3.

I t = (tr , tg , tb) and δ(t) = δ(tr ) δ(tg ) δ(tb).

I Local weighted histogram at pixel i :

hi (t) =
∑
j∈Ω

ω(j ) δ
(
f (i − j )− t

)
, t ∈ {0, . . . , 255}3.

I Interpretation: Spatially-weighted frequency of RGB value t.

8



Reformulation of ABF

ABF in terms of local weighted histograms:

g(i ) = η(i )−1
∑
t

thi (t)φi
(
t − θ(i )

)
,

and

η(i ) =
∑
t

hi (t)φi
(
t − θ(i )

)
,

where sum is over RGB values in the neighborhood of i .

9



Background

I ABF for grayscale images can be similarly reformulated.

I In grayscale, hi (t) is a function of a scalar variable.

I For fast algorithm, hi (t) is approximated using polynomials7.

I This gave closed-form Gaussian integrals.

I Histogram approximation using fast convolutions (moment
matching).

I For color images, hi (t) is a function of a vector variable.

I Polynomial approximation is bad due to sparse data.

7Gavaskar and Chaudhury, 2019.
10



Background

I Motivated by the approach in Mozerov and van de Weijer8:
I hi (t) is constant over an interval [ai ,bi ] (in R3).

I hi (t) is zero elsewhere.

I Summations are replaced by line integrals:

ĝ(i ) = η̂(i )−1
∫

[ai ,bi ]

t φi
(
t − θ(i )

)
dt,

η̂(i ) =

∫
[ai ,bi ]

φi
(
t − θ(i )

)
dt.

I The integrals, and hence the filter, have a closed-form
expression.

I By clever choice of the interval, the computation becomes O(1).
8Mozerov and van de Weijer, 2015.

11



Novelty of our proposal

I In Mozerov and van de Weijer, the interval was chosen to be
I passing through f (i ).

I having direction f̄ (i )− f (i ), where f̄ (i ) = mean value.

I This makes the algorithm O(1), but is an ad-hoc choice.

I We choose the interval such that it captures linear trend of
data.

I To do this, we use the covariance of the local weighted
histogram.

I Our proposed algorithm is also O(1).

12



Choice of interval

I Covariance matrix:

Ci =
∑
j∈Ω

ω(j )
(
f (i − j )− f̄ (i )

)(
f (i − j )− f̄ (i )

)>
.

I Direction of [ai ,bi ] = Largest eigenvector of the covariance
matrix.

I This should give “best” linear approximation of the set of data
points.

I Proposal:

[ai ,bi ] =
[
f̄ (i )− c

√
λi qi , f̄ (i ) + c

√
λi qi

]
;

(λi ,qi ) = Top eigenpair of Ci ,

c = Positive constant, decides length of the interval.

13



14



Fast computation of interval endpoints

I Recall: ai = f̄ (i )− c
√
λi qi , bi = f̄ (i ) + c

√
λi qi .

I We must find a fast method to compute the end points.

I O(1) Gaussian convolutions come to our rescue.

I f̄ (i ) = ω ∗ f (i )→ 3 Gaussian convolutions.

I (p, q)th entry of Ci = ω ∗ (fpfq)(i)−
(
ω ∗ fp(i)

) (
ω ∗ fq(i)

)
.

I 6 additional Gaussian convolutions to compute Ci ’s.

15



Fast computation of interval endpoints

I (λi ,qi ) computed using power iterations method.

I Power iterations:
I Initialize qi as unit vector along f̄ (i )− f (i ).9

I Iterate: qi ← Ciqi/‖qi‖.

I In practice, just one iteration is enough.

I λi = q>i Ciqi .

I Overall, computation of ai ,bi requires O(1) operations.

9Direction used in Mozerov and van de Weijer, 2015.
16



Filter approximation

I Recall:

ĝ(i ) = η̂(i )−1
∫

[ai ,bi ]
t φi

(
t − θ(i )

)
dt,

η̂(i ) =

∫
[ai ,bi ]

φi
(
t − θ(i )

)
dt.

I The integrals have closed-form expressions in terms of ai ,bi .

I This was made possible due to the nature of the approximation.

I As computation of ai ,bi is O(1), computation of ĝ(i ) becomes
O(1).

17



Filter approximation

I Closed-form expression (mean + first-order correction):

ĝ(i ) = f̄ (i ) +
(
2
(
β − αe1e−1

2
)
− 1
)
c
√
λiqi ,

where

α = σ(i )/c
√

2πλi ,

β =
1

2c
√
λi

q>i
(
θ(i )− f̄ (i ) + c

√
λiqi

)
,

e1 = exp

(
−(1− β)2

πα2

)
− exp

(
− β2

πα2

)
,

e2 = erf

(
1− β√
πα

)
− erf

(
− β√

πα

)
.

I Main point: All computations are O(1).

18



Summary of the algorithm

1. Compute ω ∗ (fpfq), ω ∗ fp for p, q = 1, 2, 3 using O(1)
convolutions.

2. For each pixel i ,
2.1 Populate Ci using the above convolved quantities.

2.2 Estimate dominant eigenpair (λi ,qi ) by power iterations
method.

2.3 Compute α, β, e1, e2 in the previous slide.

2.4 Compute ĝ(i ) using the formula in the previous slide.

Dominant cost = 9 Gaussian convolutions.

19



Application: Adaptive detail enhancement

Brief overview:

I Objective: Enhance details, but not to the same extent
everywhere.

I More enhancement in regions which are more visually salient.

I Can be accomplished using the ABF10.

I σ(i ) is decided using a saliency map.

I θ(i ) = f (i ).

I We use our proposed algorithm for color filtering.

10Ghosh et al., 2019.
20



Input (640× 960). Enhanced, ρ = 5.

Saliency map.

10

20

30

40

50

60

70

σ map.

Timings: Brute-force = 27 sec., Proposed = 1.4 sec.

21



Application: JPEG deblocking

Brief overview:

I Objective: Smooth out blocking artifacts in JPEG-compressed
images.

I For grayscale images, can be accomplished using ABF1112.

I We extend the same idea to color images.

I σ(i ) is decided using a technique proposed previously 11.

I θ(i ) = f (i ).

I We use our proposed algorithm for filtering.

11 Zhang and Gunturk, 2009.
12Gavaskar and Chaudhury, 2019.

22



Input (512× 512). Deblocked, ρ = 4.

40

60

80

100

120

140

160

σ map. Original.

Timings: Brute-force = 8.4 sec., Proposed = 0.6 sec.

23



Application: Sharpening

Brief overview:

I Objective: Sharpen a blurred image containing fine noise grains.

I For grayscale images, can be accomplished using ABF13.

I We extend the idea to color images.

I Both σ(i ) and θ(i ) are decided using previously proposed
techniques.

I We use our proposed algorithm for filtering.

13Zhang and Allebach, 2008.
24



Input (1600× 1200). Sharpened, ρ = 4.
23

24

25

26

27

28

29

30

31

32

33

σ map.

Timings: Brute-force = 62 sec., Proposed = 4.4 sec.

25



Conclusion

I Proposed O(1) algorithm for adaptive bilateral filtering of color
images.

I First such algorithm to the best of our knowledge.

I Core idea: Approximate local histogram as uniform along
direction of maximum variance.

I Achieves about 15× speedup with reasonable accuracy.

I Useful for detail enhancement, sharpening, and deblocking.

I Better accuracy and extension to non-Gaussian kernels?

Research supported by EMR grant SERB/F/6047/2016-2017 from
DST-SERB, Government of India.

26



References I

- C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,”
Proc. IEEE International Conference on Computer Vision, pp. 839–846,
1998.

- B. Zhang and J. P. Allebach, “Adaptive bilateral filter for sharpness
enhancement and noise removal,” IEEE Transactions on Image Processing,
vol. 17, no. 5, pp. 664–678, 2008.

- K. Sugimoto and S.-I. Kamata, “Compressive bilateral filtering,” IEEE
Transactions on Image Processing, vol. 24, no. 11, pp. 3357–3369, 2015.

- M. G. Mozerov and J. van de Weijer, “Global color sparseness and a local
statistics prior for fast bilateral filtering,” IEEE Transactions on Image
Processing, vol. 24, no. 12, pp. 5842–5853, 2015.

- R. Deriche, “Recursively implementing the Gaussian and its derivatives,”
Research Report RR-1893, INRIA, 1993.

27



References II

- I. T. Young and L. J. van Vliet, “Recursive implementation of the Gaussian
filter,” Signal Processing, vol. 44, pp. 139–151, 1995.

- S. Ghosh, R. G. Gavaskar, and K. N. Chaudhury, “Saliency guided image
detail enhancement,” Proc. National Conference on Communications, pp.
1–6, 2019.

- M. Zhang and B. K. Gunturk, “Compression artifact reduction with
adaptive bilateral filtering,” Proc. SPIE Visual Communications and Image
Processing, vol. 7257, 2009.

- R. G. Gavaskar and K. N. Chaudhury, “Fast adaptive bilateral filtering,”
IEEE Transactions on Image Processing, vol. 28, no. 2, pp. 779–790, 2019.

28



Thanks for listening!


