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Y. Tang, D. Wu, Z. Jin, W. Zou, and X. Li, “Multi-modal metric learning for vehicle re-identification in

traffic surveillance environment,” ICIP 2017,pp. 2254—-2258. (Related Work)
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o TWO STREAM SIAMESE NETWORK -



Our Approach
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Our Approach
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Experimental Setup: Dataset used

Table 1. Dataset information: number of vehicles and number
of vehicles with a visible license plate in Camera 1 and 2:
number of vehicles matchings between Camera 1 and 2.

Set Camera | Camera 2 No.Match.
#Vehicles |#Plates || #Vehicles |#Plates

01 389 343 280 245 199

02 350 310 244 227 174
03 340 301 274 248 197
04 280 251 233 196 140

05 345 295 247 194 159
Total 1704 1500 1278 1110 869




Experimental Setup: Dataset used
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Experimental Setup: Dataset used

Table 2. Parameter settings used in our experiments.

Settings Training Testing
#positivesfnegatives|f#positivesfnegatives

N=3A=5 3867 3867 3903 19515

N =10, A = 10[| 42130 | 42130 42707 | 427070




Experimental Setup: Different Settings

Algorithm P R F A
Siamese-Car (Stream 1) 85.8% | 93.1% | 89.3% | 96.3%
Siamese-Plate (Stream 2) 75.9% | 81.8% | 78.8% | 92.6%
Siamese (Two-Stream) || 92.7% | 93.0% | 92.9% | 97.6%
N=10.A =10
Algorithm P R F A
Siamese-Car (Stream 1) 92.4% | 83.5% | 87.8% | 97.9%
Siamese-Plate (Stream 2) 86.8% | 59.5% | 70.6% | 95.5%
Siamese (Two-Stream) || 94.7% | 90.6% | 92.69% | 98.7%
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Experimental Setup: Different Settings

N=10,A=10
Siamese (Two-Stream) P R F A
CNN = Lenet5 89.6% | 85.2% | 87.3% | 97.8%
CNN = Matchnet [22] 94.5% | 87.1% | 90.7% | 98.4%
CNN = MC-CNN (23] 89.0% | 90.1% | 89.6% | 98.1%

CNN = GoogleNet 88.8% | 81.8% | 85.1% | 97.4%
CNN = AlexNet 91.3% | 86.5% | 88.8% | 98.0%
CNN = Small-VGG 94.7% | 90.6% | 92.6% | 98.7%
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Experimental Setup: Complex Architectures

Vehicle (96x96 pixels) Vehicle (patches 224 x224 pixels)

Ny

Plate (96x48 pixels)
Siamese Two-Stream Siamese-Car (Small-VGG):
(Small-VGG) F =88.1% and A = 97.9%
F =92.6% and A 98.7% Siamese-Car (Resnet50):

- F =81.2% and A = 97.1%




Experiment Scenarios
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Experiment Scenarios
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Conclusions

e Fast Two-Stream Siamese;

e Tests: network more robust than other One-Stream Siamese
architectures.

e Evaluation of simple and complex CNNs, used by the Siamese
Network, to find a trade-off between efficiency and performance.




Future Works

Combine OCR with the two distinctive features (shape and plate);
More evaluations on the other public datasets;

Combine spatial-temporal informations;

Create a N Temporal Two Streams Siameses;
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Thank you for your attention !
Questions ?




