A NOVEL MONOCULAR DISPARITY ESTIMATION NETWORK WITH DOMAIN TRANSFORMATION AND AMBIGUITY LEARNING

CONTRIBUTIONS

Our novel network architecture outperforms the unsupervised monocular baseline [1] by:

- Accounting for ambiguities (occluded, complex or cluttered image areas)
- Efficient fusion between encoder (left domain) and decoder (left-right domain) features via rectangular 5x3 convolutions and domain transformation blocks
- Full disparity estimation in a single pass
- 50% parameter reduction

- EXPERIME	NTA		ESU	JLTS O		E KITT	I DATAS		diamat	ltm	- PROPOSE
	5			depth (p							
Model	D	R	F	abs rel	sq rel	rmse	log rmse	a1	a2	a3	k3c32
Monodepth				0.149	2.565	6.645	0.245	0.849	0.936	0.969	k3c16
Monodepth pp			Х	0.114	1.138	5.452	0.204	0.859	0.946	0.977	
rdispnet_m			Х	0.111	1.031	5.416	0.199	0.860	0.948	0.978	
rrdispnet_m		Х	Х	0.113	1.114	5.364	0.195	0.866	0.951	0.981	
rrdispnet_dtm	Х	Х	Х	0.112	1.038	5.304	0.198	0.863	0.950	0.979	Conv + ELU
rrdispnet_m pp		Х	Х	0.105	0.949	5.174	0.190	0.866	0.952	0.981	

Juan Luis Gonzalez Bello

Department of Electrical Engineering Korea Advanced Institute of Science and Technology

The network predicts the ambiguity masks for both left and right disparities. The ambiguity masks weight most terms of the total loss function consisting of photometric reconstruction (11 + SSIM), edge preserving smoothness, perceptual, ambiguity penalty, and left-right consistency $l_s = a_{rec}l_{rec} + a_{ds}\frac{0.1}{2^{s-1}}l_{ds} + a_pl_p + a_al_a + a_{lr}l_{lr}$ terms:

[1] Clement Godard, Oisin Mac Aodha, and Gabriel J. Brostow, "Unsupervised monocular depth estimation with left-right consistency," in CVPR, July 2017.

Munchurl Kim

FULL DISPARITY ESTIMATION IN A SINGLE PASS

filter channels, and content alignment

ED NETWORK ARCHITECTURE

Contact: juanluisgb@kaist.ac.kr mkimee@kaist.ac.kr

> learning allows for full depth estimation in a single pass.

RESIDUAL AND DOMAIN TRANSFORMATION BLOCKS For better feature extraction with less $-\Phi$ Backward warping g(h, flow) between left and right domain features 3x3 Conv ELU 3x3 Conv Sigmoid