A Generalization of Principal Component Analysis

Samuele Battaglino Department of Computer Science University of Illinois at Chicago

Introduction

 PCA and variant methods are dimension reduction techniques that rely on orthogonal transformations, let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^d$ be a set of d-dimensional input vectors with zero mean. In the conventional L²-PCA, one "extracts" the first principal vector via:

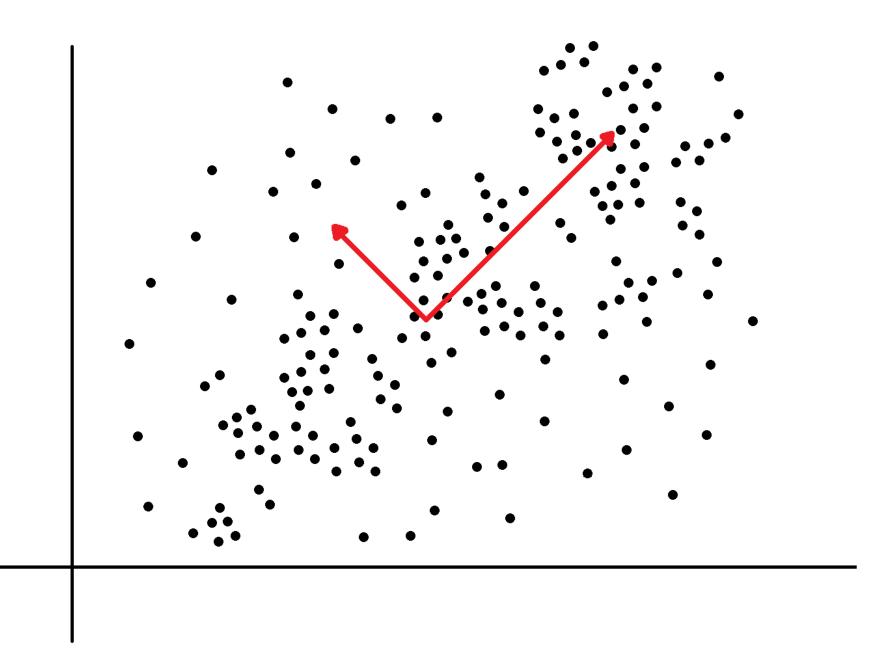
$$w_{L^2}^{(1)} \triangleq \arg\max_{w:||w||=1} \sum_{i=1}^{N} (w^T x_i)^2$$

In its original L²-form, PCA is very susceptible to outliers or highly-noisy datasets. This is because a noisy sample or an outlier x_i may result in a large inner product $w^T x_i$, which will be further amplified as one considers the second powers of inner products in the objective function. Thus, by lowering the power it is possible to achieve a more robust *L^p*-PCA:

$$w_{L^{p}}^{(1)} \triangleq \arg\max_{w:||w||=1} \sum_{i=1}^{N} |w^{T}x_{i}|^{p}$$

• **Subsequent principal vectors** of the PCA can be extracted by projecting *X* to a subspace orthogonal to the previous found ones through this equation:

$$w_{L^{p}}^{(j)} \triangleq \arg\max_{w:||w||=1} \sum_{i=1}^{r} (w^{T} (I - \Sigma_{k=1}^{j-1} w_{L^{p}}^{(k)} (w_{L^{p}}^{(k)})^{T} x_{i})^{p}$$



Kernel Principal Component Analysis (KPCA) refers to performing PCA in a certain feature space. In the case of the *L*²-form, we extract the first principal vector via: λT

$$w_{L^2,\phi}^{(1)} = \arg\max_{w:||w||=1} \sum_{i=1}^{N} (w^T \phi(x_i))^2$$

Generalized PCA

In this work, we study the Generalized PCA (GPCA) problem:

$$w_f^{(1)} \triangleq \underset{w:||w||=1}{\operatorname{arg\,max}} \sum_{i=1}^N f(w^T x_i)$$

where *f* is an arbitrary convex function.

Theorem 1: Let F(w) be a convex function. Let ||w'|| = 1 and $w'' = \frac{\nabla F}{||\nabla F||}|_{w=w'}$. Then, $F(w') \ge F(w)$. In particular, the update $w \leftarrow \frac{\nabla F}{||\nabla F||}$ provides a locally maximum solution to the problem $max_{w:||w||=1}F(w)$.

For our scenario, we first note that $w \leftarrow f(w^T x_i)$ is convex for any x_i , as the composition of a convex function and an affine function is always convex. It follows that $\sum_{i=1}^{N} f(w^T x_i)$ is convex and Theorem 1 is applicable. We thus use the update:

$$w \leftarrow \frac{\sum_{i=1}^{N} f'(w^T x_i) x_i}{||\sum_{i=1}^{N} f'(w^T x_i) x_i||}$$

Generalized Kernel PCA

We also study the Kernel version of the problem, the Generalized KPCA (GKPCA):

$$w_{f,\phi}^{(1)} \triangleq \arg\max_{w:||w||=1} \sum_{i=1}^{N} f(w^T \phi(x_i)) \qquad C$$

where $\phi(\cdot)$ is an arbitrary feature map.

Let $c_i \triangleq f'(w^T \phi(x_i))$, $c = [c_1 \dots c_N]^T$, K define the Kernel matrix with entry $\phi(x_i)^T \phi(x_i)$ in the *i*th row, *j*th column, and Y be the all-1/n matrix. We propose the following algorithm to calculate the GKPCA:

$$c_i \leftarrow f' \left(\frac{\sum_{j=1}^N K_{ij} c_j}{\sqrt{\sum_{z,q=1}^N c_z c_q K_{zq}}} \right)$$

The principal component of an input x is then extracted via

 $w^T \phi(x) = \sum_{j=1}^N c_j K(x_j, x) / \sqrt{c^T K c}$

Erdem Koyuncu

Department of Electrical and Computer Engineering University of Illinois at Chicago

