IMAGE SUPER-RESOLUTION USING CNN OPTIMISED BY SELF-FEATURE LOSS

Zhao Gao, Eran Edirisinghe, Slava Chesnokov; Department of Computer Science, Loughborough University, UK; Imaging & Vision Group, Arm Ltd, UK

Problem statement

Technical limitations in imaging devices and systems cause the degradation during image acquisition.

Methodology

Deep learning based single image super resolution

Innovation

LOSS FUNCTION

Proposed network Self-Feature-based Super-Resolution (SFSR)

Table 4.1: Performance of different loss functions for our networks on Set5 and Set14 benchmark data. $[3 \times \text{upscaling}]$

Our code is made publicly available: https://github.com/OranginaGaoZhao/Self- Feature- Super- Resolution

Set5	Pixel	VGG-feature	Self-feature
PSNR	$29.29 \mathrm{dB}$	$26.94\mathrm{dB}$	$29.85\mathrm{dB}$
SSIM	0.8853	0.8166	0.8872
Set14	Pixel	VGG-feature	Self-feature
PSNR	$26.23\mathrm{dB}$	$24.60\mathrm{dB}$	$29.92\mathrm{dB}$
SSIM	0.8044	0.7324	0.81072

Performance

