

Introduction

Problem Definition

Visual Question Answering (VQA) aims at answering a natural language question about a given image.

Contributions

1. Propose two novel modules to encode relations between words and between image regions, respectively. This is the first time to explore the relations between words and between image regions in a unified framework for the VQA task.

2. Extensive experiments show the effectiveness of the proposed relation encoding modules. Our approach achieves new state-of-the-art results on the VQA 1.0 dataset.

(a) Visual relation encoding. It encodes the relations between image regions.

(b) Language relation encoding. It encodes multi-scale relations between words.

LANGUAGE AND VISUAL RELATIONS ENCODING FOR VISUAL QUESTION ANSWERING Fei Liu, Jing Liu, Zhiwei Fang, Hanqing Lu Institute of Automation, Chinese Academy of Sciences, Beijing, China

Approach

Masked self-attention

• Comparison with the state-of-the-arts

Model

QGHC [1 VKMN^[1] MFH [19] **DCN** [20 DA-NTN [CoR [22] Ours Ours + B

Ablation studies

Model	Accuracy
Our model	62.9
Our model w/o position information	62.6
Our model w/o masked self-attention	61.8
Our model w/o fusion gate	62.5
Our model w/o attentive pooling	62.5
Our model w/o visual relation encoding	62.0

More experiments can be found in our paper.

Contact us:	Fei
	Jing
	Zhi
	Ha

Experiments

		Test-std			
	All	Other	No.	Y/N	All
[7]	65.9	57.1	38.1	83.5	65.9
18]	66.0	57.0	37.9	83.7	66.1
9]	66.8	57.4	39.7	85.0	66.9
[C	66.9	57.3	42.4	84.6	67.0
[21]	67.9	58.6	41.9	85.8	68.1
2]	68.4	59.1	44.1	85.7	68.5
	67.2	57.5	40.6	85.6	67.4
U	69.1	59.5	44.1	86.8	69.3

ei Liu (liufei2017@ia.ac.cn) ng Liu (jliu@nlpr.ia.ac.cn) niwei Fang (zhiwei.fang@nlpr.ia.ac.cn) anging Lu (luhq@nlpr.ia.ac.cn)