

Efficient Codebook and Factorization for Second-Order Representation Learning

Pierre JACOB¹, David PICARD^{1,2}, Aymeric HISTACE¹, Edouard KLEIN³

Problems

• How to build rich and compact representations?

- Fine-grained visual tasks => Second-order pooling
- Unrelated feature aggregation => Codebook strategies
- Compactness in representation learning => Deep metric learning (DML)
- What about the drawbacks?
- Second-order dimensionality is too large for DML
- Codebook strategies further increase this dimensionality

Propositions

Joint Codebook-Factorization strategy

- Codebook + second-order pooling increases performances, albeit at a prohibitive cost
- Joint factorization and codebook strategy => rich and compact representations

Joint Codebook Factorization

Raw representation

- We duplicate the codebook assignment for symmetry purpose:

Raw projection

• The i-th dimension is computed as follows:

$$\mathbf{x}_i = \left\langle \mathbf{w}_i \; ; \; \mathbf{h}(\mathbf{x})
ight
angle$$

First factorization

and feature:

$$z_i = \left\langle \mathbf{p}_i \ ; \ \mathbf{h}(\mathbf{x}) \otimes \mathbf{x}
ight
angle \left\langle \mathbf{q}_i \ ; \ \mathbf{h}(\mathbf{x}) \otimes \mathbf{x}
ight
angle$$

Second factorization

codebook strategies:

$$egin{aligned} \mathbf{p}_i &= \sum_j \mathbf{e}^{(j)} \otimes \mathbf{u}_{i,j} \ \mathbf{q}_i &= \sum_j \mathbf{e}^{(j)} \otimes \mathbf{v}_{i,j} \end{aligned} egin{aligned} &z_i &= \ &z_i$$

Sharing projectors

entries:

$$z_i = \left(\mathbf{h}(\mathbf{x})^{ op} \mathbf{A} \widetilde{\mathbf{U}}_i^{ op} \ \mathbf{x}
ight) \left(\mathbf{h}(\mathbf{x})^{ op} \mathbf{B} \widetilde{\mathbf{V}}_i^{ op} \ \mathbf{x}
ight)$$

etis

Université / / Paris Seine

- 1. ETIS, UMR 8051, Université Paris Seine, Université de Cergy-Pontoise, ENSEA, CNRS, F-95000, Cergy, France 2. LIGM, UMR 8049, Ecole des Ponts, UPE, Champs-sur-Marne, France
- 3. C3N, Pôle Judiciaire de la Gendarmerie Nationale, 5 Boulevard de l'Hautil, 95000 Cergy, France

 $\mathbf{y} = \mathbf{h}(\mathbf{x}) \otimes \mathbf{x} \otimes \mathbf{h}(\mathbf{x}) \otimes \mathbf{x}$

 $\otimes \mathbf{x} \otimes \mathbf{h}(\mathbf{x}) \otimes \mathbf{x}$

• Rank-one factorization to split each pair of codebook assignment

Multi-rank factorization which generalize intra-projection in

$$\left(\mathbf{h}(\mathbf{x})^{ op}\mathbf{U}_{i}^{ op} \ \mathbf{x}
ight) \left(\mathbf{h}(\mathbf{x})^{ op}\mathbf{V}_{i}^{ op} \ \mathbf{x}
ight)$$

• Entries in projection matrices can be shared between codebook

Comparison to the state-of-the-art on three image retrieval datasets

- size with fewer loss in performances
- Codebook strategies further improve second-order pooling • Joint codebook-factorization greatly reduces the representation
- Decrease in parameters can be handled by sharing projectors at the cost of a drop in performances

We would like to acknowledge COMUE Paris Seine University, University of Cergy-Pontoise and M2M Factory for their financial and technical support.

Results

Recall@1 against number of parameters

d	CUB	CARS	SOP
	57.1	<u>81.4</u>	74.8
2	60.1	82.6	77.4
-8	<u>58.1</u>	74.2	<u>76.6</u>

Conclusion

Acknowledgments

