

CAPTURING LONG-RANGE DEPENDENCIES IN VIDEO CAPTIONING

INTRODUCTION

- Video captioning requires both video understanding and natural language processing.
- Most video captioning models rely on recurrent models including LSTM.
- These model still suffer from long-range dependency problem in video captioning.

A woman making food for her dog

- Given video $V = (v_0, v_1, ..., v_n)$, we sampled k frames for all videos and extracted the features $X = (x_0, x_1, ..., x_k)$ using ResNet-50 or ResNet-152.
- The extracted features are fed into the LSTM cell to make a context vector h_k .
- The extracted features are also fed into the non-local block¹.
- The outputs from the non-local block are collected and linearly embedded to form $F(n_{out})$.
- GRU uses a combination of h_k and $F(n_{out})$ to generate words sequentially.

Jaeyoung Lee^{1,3}, Yekang Lee¹, Sihyeon Seong^{1,3}, Kyungsu Kim², Sungjin Kim², and Junmo Kim^{1,3} ¹Korea Advanced Institute of Science and Technology, ²Samsung Research, ³Mofl, Inc.

RESULTS

Model	BLEU@1	BLEU@2	BLEU@3	BLEU@4	METEOR	$ROUGE_L$	CIDEr
S2VT [2]	-	-	-	-	29.8	-	-
Y. Liu <i>et al</i> . [18]	80.2	69.0	60.1	51.1	32.6	-	-
h-RNN [3]	81.5	70.4	60.4	49.9	32.6	-	65.8
Attention fusion [19]	-	-	-	52.4	32.0	-	68.8
BA encoder [4]	-	-	-	42.5	32.4	-	63.5
PickNet [20]	-	-	-	52.3	33.3	69.6	76.5
Baseline	76.8	64.2	54.7	44.8	32.5	68.8	75.0
J. Lee et al. [9]	78.3	65.8	56.1	46.1	33.0	69.5	78.3
Ours (ResNet-50)	78.9	66.8	56.9	46.6	33.4	69.9	81.0
Ours (ResNet-152)	82.9	69.9	59.8	49.7	33.7	71.7	84.5
PickNet [20] Baseline J. Lee <i>et al.</i> [9] Ours (ResNet-50) Ours (ResNet-152)	- 76.8 78.3 78.9 82.9	- 64.2 65.8 66.8 69.9	- 54.7 56.1 56.9 59.8	52.3 44.8 46.1 46.6 49.7	33.3 32.5 33.0 33.4 33.7	69.6 68.8 69.5 69.9 71.7	76.5 75.0 78.3 81.0 84.5

NON-LOCAL BLOCK¹

be
$$f(\mathbf{x}_i, \mathbf{x}_j) = e^{\mathbf{x}_i W_{\theta}^T W_{\phi} \mathbf{x}_j}$$
.

 $n_i = W_z y_i + x_i$ (residual connection).

PERFORMANCES/FRAMES

CONCLUSION

[REFERENCES] 1. Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He, "Nonlocal neural networks," in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

GT: a dog is running down the sidewalk. Baseline: a dog is walking. J. Lee et. al.: a dog is walking on the ground. Ours: a dog is walking on the sidewalk.

A non-local block can complement a LSTM cell in terms of temporal capacity in video captioning.

A non-local block encourages the network to utilize less trivial and more informative words.