Towards Multi-rigid Body Localization

Andrea Pizzo*, Sundeep Prabhakar Chepuri ${ }^{\dagger}$, and Geert Leus ${ }^{\dagger}$
andrea.pizzo@ing.unipi.it, \{s.p.chepuri;g.j.t.leus\}@tudelft.nl

Problem statement

- Jointly estimate the relative position and orientation of multiple rigid bodies in \mathbb{R}^{3}
- Based on range-only measurements between the sensor pairs.
- Without any inertial measurements (e.g., accelerometers) and/or anchors.

Applications

- Control and maneuvering of unmanned aircrafts, drones, underwater vehicles, satellites, and robotics.
- Topology-aware localization.

- N sensors mounted on each rigid body.
- We know how the sensors are mounted on each rigid body (e.g., during fabrication).
- Absolute position of the sensors, or the rigid bodies itself is not known.

Absolute position of i th body (rigid body transformation [1]):

$$
\mathbf{S}_{i}=\mathbf{Q}_{i} \mathbf{C}_{i}+\mathbf{t}_{i} \mathbf{1}_{N}^{\top} \quad i=1,2
$$

$\mathbf{s}_{i}=\left[\mathbf{s}_{1, i}, \cdots, s_{N, i}\right] \epsilon^{3 \times N}$

Remarks:

1. $\mathbf{C}_{i}=\left[\mathbf{c}_{1, i}, \cdots, \mathbf{c}_{N, i}\right]$ is the known coordinates of the i th body in the reference frame.
2. \mathbf{Q}_{i} is the unknown rotation matrix, i.e., $\mathbf{Q}_{i}^{T} \mathbf{Q}_{i}=\mathbf{I}$. It tells how the i th rigid body is rotated in the reference frame. 3. $\mathbf{t}_{i} \in \mathbb{R}^{3 \times 1}$ is the unknown translation of the i th body.

Measurements

Squared range between cross-body sensors (noise free):

$$
\mathbf{Y}^{\odot} 2=\boldsymbol{\psi}_{1} \mathbf{1}_{N}^{\top}+\mathbf{1}_{N} \boldsymbol{\psi}_{2}^{\top}-2 \mathbf{S}_{1}^{\top} \mathbf{S}_{2}
$$

$$
\psi_{i}=\left[\left\|\mathbf{s}_{1, i}\right\|^{2}, \cdots,\|,\| \mathbf{s}_{N, i} \|^{l}\right]^{\top} \epsilon^{N \times 1} \text { and }[\mathbf{Y}]_{m, n}=\left\|\mathbf{s}_{m, i}-\mathbf{s}_{n, i}\right\|_{2}, m, n=1, \cdots, N \quad i=1,2 .
$$

Proposed estimators

For relative localization (imagine multidimensional scaling):

1. Estimate the relative rotation matrix $\mathbf{Q}=\mathbf{Q}_{1}^{T} \mathbf{Q}_{2} \in \mathcal{V}_{3,3}$, where

$$
\mathcal{V}_{3,3}=\left\{\mathbf{Q} \in \mathbb{R}^{3 \times 3}: \mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}_{3}\right\}
$$

2. Estimate the relative translation $t=\left\|\mathbf{t}_{2}-\mathbf{t}_{1}\right\|_{2}^{2} \in \mathbf{R}$.

Relative rotation estimator

Step 1: Project out the known vectors $\mathbf{1}_{N}^{\top}$ and $\mathbf{1}_{N}$ from \mathbf{Y}

$$
\tilde{\mathbf{Y}}=-1 / 2 \boldsymbol{\Gamma}_{N} \mathbf{Y}^{\odot 2} \boldsymbol{\Gamma}_{N}=\tilde{\mathbf{S}}_{1}^{\top} \tilde{\mathbf{S}}_{2}=\mathbf{C}_{1}^{\top} \mathbf{Q} \mathbf{C}_{2}
$$

$\tilde{\mathrm{s}}_{i}=\mathrm{s}_{i} \Gamma_{N}$ with projection matrix $\boldsymbol{\Gamma}_{N}$
Step 2: Orthogonal Procrustes Problem (OPP) [2]:

$$
\widehat{\mathbf{Q}}=\underset{\mathbf{O} \in \mathcal{V}_{2 \times 2}}{\operatorname{argmin}}\left\|\check{\mathbf{Y}}-\mathbf{C}_{1}^{\top} \mathbf{Q}\right\|_{\mathrm{F}}^{2}=\mathbf{U} \mathbf{V}^{\top}
$$

$\check{\mathrm{Y}}=\tilde{\mathrm{Y}} \mathrm{C}_{2}^{\dagger}$ and $\mathrm{C}_{1} \check{\mathrm{Y}}=\mathbf{U} \boldsymbol{\mathrm { L }} \mathrm{V}^{\boldsymbol{\top}}$

Relative translation estimator

We can express range in terms of relative translation as:

$$
\|\mathbf{Y}\|_{\mathrm{F}}^{2}=N \sum_{n=1}^{N}\left(\left\|\mathbf{c}_{n, 1}\right\|_{2}^{2}+\left\|\mathbf{c}_{n, 2}\right\|_{2}^{2}\right)+N^{2} \underbrace{\left\|\mathbf{t}_{1}-\mathbf{t}_{2}\right\|_{2}^{2}}_{\text {relative translation }}
$$

Thus

$$
\hat{t}=\frac{1}{N^{2}}\|\mathbf{Y}\|_{\mathbf{F}}^{2}-\frac{1}{N}\left(\sum_{n=1}^{N}\left(\left\|\mathbf{c}_{n, 1}\right\|_{2}^{2}+\left\|\mathbf{c}_{n, 2}\right\|_{2}^{2}\right)\right)
$$

Simulation results
Set-up: $N=10,\left\{\psi_{1}, \theta_{1}, \phi_{1}\right\}=\left\{20^{\circ},-25^{\circ}, 30^{\circ}\right\}$ and $\left\{\psi_{2}, \theta_{2}, \phi_{2}\right\}=\left\{40^{\circ}, 135^{\circ},-75^{\circ}\right\}, \mathbf{t}_{1}=[1,-5,4]^{\top} \mathbf{m}, \mathbf{t}_{2}=$ $[-3,1,7]^{\top} \mathrm{m}$, and 10^{4} Monte-Carlo experiments.

[1] S. P. Chepuri, G. Leus,and A.-J van der Veen," Rigid Body Localization Using Sensor Networks," IEEE Trans. Sig.
Process., 2014.
[2] G.H. Golub and C.F. van Loan, Matrix Computations, JHU Press, 1996

