

MOTIVATION

Precise identification of cell boundaries, their shapes, and quantifying inter-cellular space leads to a better understanding of cell morphogenesis

CHALLENGE

The current methods are not able to generate closed cell surfaces in the 3D image stack while being able to accurately delineate features of interest such as the inter-cellular spaces and protrusions

From Left to Right: Inter-cellular space, Protrusion are indicated by red arrows, example images in xy direction from the first and second dataset

DATA

- Two 3D confocal image stack datasets of fluorescent-tagged plasma-membrane cells
- The first dataset contains 3 layers of cells in the shoot apical meristem of 6 Arabidopsis thaliana
- The second dataset consists of a long-term time-lapse from A. thaliana's leaf epidermal tissue that spans over a 12 hour period

Accurate 3D Cell Segmentation Using Deep Features and CRF Refinement

Jiaxiang Jiang¹, Po-Yu Kao¹, Samuel A. Belteton², Daniel B. Szymanski², B.S. Manjunath¹

METHOD

3D U-Net For Deep Feature Map Generation

3D Watershed For Segmentation Map

- A 3D U-Net based neural network is used to generate a probability map of each voxel being the membrane
- A 3D watershed algorithm whose seeds are generated automatically is applied to this probability map, and outputs the initial cell segmentation result

(A) Inverted raw image in xy orientation, (B) inverted probability map from the 3D U-Net, (C) initial segmentation result from 3D watershed.

• Finally, a CRF is used to refine the boundaries of this initial cell segmentation

(A) Inverted probability map from the 3D U-Net, (B) initial segmentation without CRF refinement, (C) final segmentation result with CRF refinement.

¹University of California, Santa Barbara, ²Purdue University

Table 1. 3D Segmentation Performance on L1				
Algorithm	Precision	Recall	F-Score	
ACME	0.805	0.966	0.878	
MARS	0.910	0.889	0.899	
Supervoxel method	0.962	0.932	0.947	
Result before CRF	0.944	0.930	0.937	
our method	0.953	0.973	0.963	
Table 3. 3D Segmentation Performance on L3				
Algorithm	Precision	Recall	F-Score	
ACME	0.745	0.976	0.845	
MARS	0.909	0.879	0.894	
Supervoxel method	0.982	0.881	0.929	
Result before CRF	0.933	0.888	0.910	
our method	0.943	0.932	0.937	

The top row shows the segmentation results of the cell image with inter-cellular spaces indicated by red arrows and the bottom row shows the segmentation results of the cell image with a protrusion pointed by a red arrow. (A) Inverted raw image in xy orientation, (B) MARS [1], (C) ACME [2], (D) supervoxel-based method [3], (E) proposed method without CRF, (F) proposed method

CONCLUSION

We present a probability map based 3D cell segmentation method which requires very few parameters for membrane tagged images. The experimental results show that our method achieves better segmentation performance compared to other current methods with much less computation time.

ACKNOWLEDGEMENT

REFERENCE

methods 7.7 (2010): 547.

EXPERIMENTAL RESULTS

Table 2. 3D Segmentation Performance on L2				
Algorithm	Precision	Recall	F-Score	
ACME	0.775	0.980	0.866	
MARS	0.921	0.879	0.900	
Supervoxel method	0.910	0.932	0.921	
Result before CRF	0.924	0.920	0.922	
our method	0.943	0.973	0.953	

Table 1 to 3 show the comparison of the final result using our proposed method and other methods including ACME [1], MARS [2], and a supervoxel-based algorithm [3] on 3 layers of cells respectively

This work was supported by NSF MCB Grant No. 1715544

[1] Mosaliganti, Kishore R., et al. "ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes." PLoS computational biology 8.12 (2012): e1002780.

[2] Fernandez, Romain, et al. "Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution." *Nature*

[3] Stegmaier, Johannes, et al. "Cell segmentation in 3D confocal images using supervoxel merge-forests with CNN-based hypothesis selection." 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018.