$\begin{bmatrix} \mathbf{E} \\ \mathbf{E}$

Introduction

To achieve high quality tomographic reconstructions a well calibrated measurement setup is needed.

- Our computed tomography (CT) setup is composed of an array of CCD cameras
- A calibration procedure for the estimation of a cameras extrinsic parameters was developed using a genetic algorithm and a ray-tracer.
- A 3D target was designed, manufactured and tested in phantom studies as well as in a computed tomography of chemiluminescence (CTC) experiment

Camera Calibration - Optimization Procedure

extrinsic camera parameters The (orientation and location) are encoded as genes in a chromosome by 7 real valued variables:

 $c = (\theta, \phi, R, Lx, Ly, Lz, \alpha)$

Where α is the rotation about the lookat-vector axis.

A population of chromosomes undergoes an evolutionary process by means of selection, crossover and application of genetic operators such as mutation.

Fitness of a chromosome is measured by ray-tracing a numerical replica of the 3D target and evaluation of the L_1 -norm between raytraced image and camera image.

Camera reference image

Rendered initial view (left) and calibrated view (right) superimposed on the reference image

Evolutionary Camera Pose Estimation of a Multi-Camera Setup for Computed Tomography

A. Unterberger, J. Menser, A. Kempf, K. Mohri

University of Duisburg Essen, Institute for Combustion and Gas Dynamics, Germany

Error Study Using the Numerical Target

A numerical test of the calibration accuracy was conducted:

- Two tests, each with 7 cameras arranged in a half circle. One set with $\theta = 90^{\circ}$ (planar) and the second with $\theta = 60^{\circ}$ (inclined).
- 25 runs were carried out per case to obtain some statistics.

Calibration errors for the planar cameras

cam	ε _{loc} [mm]	$\begin{bmatrix} \boldsymbol{\varepsilon}_{x-rot} \\ [10^{-2}^{\circ}] \end{bmatrix}$	$[10^{-2\circ}]$	$ \begin{bmatrix} \boldsymbol{\varepsilon}_{z-rot} \\ [10^{-2}^{\circ}] \end{bmatrix} $
1	0.1115	0.1409	-0.0653	0.1563
2	0.3293	-0.6960	0.0762	0.1223
3	0.5610	-6.6090	0.2566	4.6972
4	0.2071	-0.7724	1.2652	-0.1753
5	0.1873	0.5474	-1.3476	-0.0385
6	0.3159	-1.5687	2.6161	-0.8555
7	0.1675	0.6832	1.1192	0.0607

Manufacturing and Design of the 3D Target

- The target was manufactured from a solid block of aluminum and was coated with luminescent spray-paint.
- The target is modeled using cubic voxels in a ray-tracing algorithm and can be rendered from different views.

Dimensions of the target in mm (left). Image of a CTC setup (middle). Rendered movie (right)

Calibration errors for the inclined cameras

cam	ε _{loc} [mm]	$ \begin{bmatrix} \boldsymbol{\varepsilon}_{x-rot} \\ [10^{-2}^{\circ}] \end{bmatrix} $	$egin{array}{l} m{arepsilon}_{y-rot} \ [10^{-2\circ}] \end{array}$	$egin{array}{l} m{arepsilon}_{z-rot} \ [10^{-2\circ}] \end{array}$
1	0.4055	-0.9858	1.7274	-0.6111
2	0.6161	-3.0382	-2.8156	1.8501
3	0.4826	-1.3804	-1.8737	0.8298
4	0.2865	-1.1062	-0.0407	-0.5665
5	0.3577	-0.9471	-1.5949	1.2145
6	1.5749	3.7147	-13.2241	6.5970
7	0.5310	-1.7956	4.5259	-2.8453

Vertical (left) and horizontal slices (right) of different heights above the burner of the reconstructed 3D field.

- and experimentally.
- single camera.

1) M.S. Sweeney et al., Combust. Flame, vol. 159, pp. 2896 - 2029, 2012. 2) J. Floyd, P. Geipel, A. M. Kempf, Combust. Flame., vol. 158, pp. 376–391, 2011. 3) K. Mohri et al., Appl. Opt. vol. 56, 7385-7395, 2017.

Institute for Combustion and Gas Dynamics Fluid Dynamics Mohri Group - Tomography

Calibration in a CTC Experiment

acA645-100 gm GigE cameras. Half of the cameras were arranged planar in a half circle around the burner, the other half had an inclined view

reconstruction of the Cambridge-Sandia

stratified flame SwB1 [1] with CTC [2].

The CTC setup [3] consisted of 30 Basler

The calibration was tested in a

Volume rendered reconstructed 3D field.

Conclusions

We demonstrated the accuracy of our calibration method numerically

The calibration algorithm was later transferred to C/CUDA and runs on a GPU server, which allows a calibration in less than 60 sec for a

Further investigations on an optimal target shape are underway.

References

