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REVE Regularization REVE Instantiation Experiments

Image Classification

Source: MathWorks (https://goo.gl/zondfq)

Notations

→ X is the input image from X
→ C is the class label from C
→ Y is an intermediate representation of X from which is

determined the predicted class Ĉ
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Regularization?

Problem

→ Huge number of parameters compared to the number of
training samples

→ Deep networks prone to overfitting
→ Regularization: way to mitigate this gap and improve

generalization

Common strategies

→ Weight decay
→ Dropout
→ Batch normalization
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Information-based Regularization Criteria

Information Bottleneck (Tishby et al., 1999)

→ Principle: minimize I(Y, X) at optimal I(Y,C)

SHADE (Blot et al., 2018)

→ Principle: minimize H(Y | C)

REVE Contribution

→ Identify a new variable Z better suited for regularization
→ Develop a variational bound over the criterion H(Z | C)
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REVE Variable

Y (train) Z (train) Z (test)

0 1 2 1 0 1 1 0 1

Definition

→ Linear decoder: WdY
→ Unique decomposition: Y = Z+ Yker where Yker ∈ kerWd and
Z ∈ (kerWd)⊥. Thus,WdY = WdZ

→ REVE Variable: Z, the part of Y effectively used for prediction
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REVE Criterion

→ The conditional entropy can be written:

H(Z | C) = H(Z) + H(C | Z)− H(C)

with H(C) entirely determined by the problem
→ Objective Function:

LREVE = H(Z) + H(C | Z)

→ For any q(Z) and r(C | Z) variational approximations of p(Z)
and p(C | Z), resp.:

LREVE ≤ −
∫
Z

p(z) log q(z)dz−
∫∫
Z C

p(z, c) log r(c | z)dzdc
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REVE Instantiation

Stochastic Encoding

A stochastic encoding is needed for computing entropies:

Y = h(We, X) + ε with ε ∼ N (0, σ2)

Computing Z

→ Compact Singular Value Decomposition ofWd: Wd = UΣV>

where the r column vectors of U and V correspond to the
non-zero singular values ofWd

→ Computation of Z:
Z = VV>Y
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REVE Loss Function

Using Bayes’ Theorem and DNN Markov-Chain hypothesis
C↔ X↔ Z:

LREVE ≤ −
∫∫∫
X Z C

p(x)p(c | x)p(z | x)
(

log q(z)+ log r(c | z)
)
dxdzdc

Thus, applying Monte-Carlo methods using the empirical
distribution of (X,C) and the sampling of Y resp., we obtain the
upperbound to minimize:

ΩREVE
(
(xn, cn);We;Wd

)
= − 1

NS

N∑
n=1

S∑
s=1

(log q(zn,s) + log r(cn | zn,s))
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Approximation r(c|z)

ΩREVE = − 1

NS

N∑
n=1

S∑
s=1

(log q(zn,s) + log r(cn | zn,s))

Variational approximation r(c | y): we use the learned classifier:

r(c | z) = S(Wd z+ b)c
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Approximation q(z)

ΩREVE = − 1

NS

N∑
n=1

S∑
s=1

(log q(zn,s) + log r(cn | zn,s))

Variational approximation q(z): how to model Z?

Y (train) Z (train) Z (test)

0 1 2 1 0 1 1 0 1
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Bimodal Approximation

Model

→ Independence between coordinates:

q(z) =
dim(Z)∏
i=1

q(zi)

→ Bimodal approximation:

q(zi) = αiN (zi | µ1,i, σ
2
1,i) + (1− αi)N (zi | µ0,i, σ

2
0,i).

→ αi: probability of the semantic attribute being present.
→ α,µ1,σ

2
1,µ0,σ

2
0 to determine.
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Compute the Parameters

Expectation Maximization for two Gaussian Mixture Model?

→ Expensive
→ The size of the mini-batches is in general too small for

obtaining a coherent model

Mini-batch Computation

→ We assume P(Mi = 1 | zi) = σ(zi) (e.g. σ the sigmoid function)

→ On the mini-batch, αi =
∑
n σ(z

(n)
i ), µ1,i =

∑
n
σ(z(n)i )

αi
z(n)i ,...
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REVE Loss

X Y

Proj.

Wd

Z

r(c|z)

q(z)
We

ΩREVE

LCε fc 

fc

GMM 

Classification 

Regularization 

DNN

r(c|y)

ΩREVE
(
(xn, cn);We;Wd

)
= − 1

NS

N∑
n=1

S∑
s=1

[
logS(Wd zn,s + b)cn

+

dim(Z)∑
i=1

log
(
αiN (zn,s,i | µ1,i, σ

2
1,i)+(1−αi)N (zn,s,i | µ0,i, σ

2
0,i)

)]
.
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Performance Analysis

Reve Performance Analysis. Classification error (%) results on
CIFAR-10 and CIFAR-100 test sets.

CIFAR-10 CIFAR-100

AlexNet Inception AlexNet Inception

Baseline 15.62 6.10 48.29 27.36
SGM Reve 14.24 6.17 - -
KDE Reve 13.86 6.04 - -
Reve 13.92 5.92 48.07 26.94
Reve + DO 12.54 5.78 41.13 26.02
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Results

Classification error (%) results on CIFAR test sets.

CIFAR-10 CIFAR-100

AlexNet Inception Net ResNet AlexNet Inception Net ResNet

Baseline 15.62 6.10 4.08 48.29 27.36 20.70
Dropout 12.63 6.04 3.93 41.32 27.26 20.16
Information DO 14.97 6.04 NC 47.97 27.34 NC
Shade + DO 13.93 5.90 4.30 41.25 26.99 20.37
Reve + DO 12.54 5.78 3.88 41.13 26.02 20.05

Classification error (%) results on SVHN test set.
SVHN

AlexNet Inception Net ResNet

Baseline 7.68 3.78 3.40
Reve 6.55 3.29 3.11
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Conclusion

→ REVE is a tractable regularization loss for image classification
→ Identifies the part of the representation orthogonal to the

kernel of the classifier as the variable to constrain
→ Penalizes the conditional entropy of the REVE variable given

the class
→ REVE shows consistent positive results on multiple

architectures and datasets
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Questions?

Thank you for your attention!
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SHADE

→ Layer-wise criterion: ΩSHADE =
∑L
l=1

∑Dl
i=1 H(Yl,i | C)

→ Uses a latent Bernoulli variable B as minimal sufficient
statistic of C for Y: I(Y,C) = I(Y,B)
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