

REVE: REGULARIZING DEEP LEARNING WITH VARIATIONAL ENTROPY BOUND Tuesday 24th September, 2019

Antoine Saporta, Yifu Chen, Michael Blot, Matthieu Cord

Image Classification

Source: MathWorks (https://goo.gl/zondfq)

Notations

- $\rightarrow X$ is the input image from \mathcal{X}
- $\rightarrow C$ is the class label from C
- → Y is an intermediate representation of X from which is determined the predicted class \hat{C}

Regularization?

Problem

- → Huge number of parameters compared to the number of training samples
- ightarrow Deep networks prone to overfitting
- → Regularization: way to mitigate this gap and improve generalization

Common strategies

- → Weight decay
- → Dropout
- → Batch normalization

Information-based Regularization Criteria

Information Bottleneck (Tishby et al., 1999)

→ Principle: minimize I(Y, X) at optimal I(Y, C)

SHADE (Blot et al., 2018)

→ Principle: minimize H(Y | C)

REVE Contribution

- \rightarrow Identify a *new* variable Z better suited for regularization
- → Develop a variational bound over the criterion H(Z | C)

REVE: Regularizing Deep Learning with Variational Entropy Bound – ICIP 2019

REVE Variable

Definition

- \rightarrow Linear decoder: $W_d Y$
- → Unique decomposition: $Y = Z + Y^{\text{ker}}$ where $Y^{\text{ker}} \in \text{ker} W_d$ and $Z \in (\text{ker} W_d)^{\perp}$. Thus, $W_d Y = W_d Z$
- \rightarrow REVE Variable: Z, the part of Y effectively used for prediction

REVE Criterion

→ The conditional entropy can be written:

$$H(Z \mid C) = H(Z) + H(C \mid Z) - H(C)$$

with H(C) entirely determined by the problem

→ Objective Function:

$$\mathcal{L}_{REVE} = H(Z) + H(C \mid Z)$$

→ For any q(Z) and $r(C \mid Z)$ variational approximations of p(Z) and $p(C \mid Z)$, resp.:

$$\mathcal{L}_{\mathsf{REVE}} \leq -\int\limits_{\mathcal{Z}} p(\boldsymbol{z}) \log q(\boldsymbol{z}) \mathrm{d}\boldsymbol{z} - \iint\limits_{\mathcal{ZC}} p(\boldsymbol{z}, \boldsymbol{c}) \log r(\boldsymbol{c} \mid \boldsymbol{z}) \mathrm{d}\boldsymbol{z} \mathrm{d}\boldsymbol{c}$$

REVE Instantiation

Stochastic Encoding

A stochastic encoding is needed for computing entropies:

$$\mathbf{Y} = h(\mathbf{W}_{e}, \mathbf{X}) + \boldsymbol{\varepsilon}$$
 with $\varepsilon \sim \mathcal{N}(0, \sigma^{2})$

Computing Z

- → Compact Singular Value Decomposition of W_d : $W_d = U \Sigma V^T$ where the *r* column vectors of *U* and *V* correspond to the non-zero singular values of W_d
- \rightarrow Computation of Z:

$$Z = V V^{\top} Y$$

REVE Loss Function

Using Bayes' Theorem and DNN Markov-Chain hypothesis $C \leftrightarrow X \leftrightarrow Z$:

$$\mathcal{L}_{\mathsf{REVE}} \leq -\iiint_{\mathcal{X} \not\subseteq \mathcal{C}} p(\mathbf{x}) p(\mathbf{c} \mid \mathbf{x}) p(\mathbf{z} \mid \mathbf{x}) (\log q(\mathbf{z}) + \log r(\mathbf{c} \mid \mathbf{z})) \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{z} \mathrm{d}\mathbf{c}$$

Thus, applying Monte-Carlo methods using the empirical distribution of (X, C) and the sampling of Y resp., we obtain the upperbound to minimize:

$$\Omega_{\mathsf{REVE}}\big((\boldsymbol{x}_n, \boldsymbol{c}_n); \boldsymbol{W}_e; \boldsymbol{W}_d\big) = -\frac{1}{NS} \sum_{n=1}^{N} \sum_{s=1}^{S} \left(\log q(\boldsymbol{z}_{n,s}) + \log r(\boldsymbol{c}_n \mid \boldsymbol{z}_{n,s})\right)$$

Approximation r(c|z)

$$\Omega_{\mathsf{REVE}} = -\frac{1}{NS} \sum_{n=1}^{N} \sum_{s=1}^{S} \left(\log q(\mathbf{z}_{n,s}) + \log r(\mathbf{c}_n \mid \mathbf{z}_{n,s}) \right)$$

Variational approximation $r(c \mid y)$: we use the learned classifier:

$$r(\boldsymbol{c} \mid \boldsymbol{z}) = \mathcal{S}(\boldsymbol{W}_d \, \boldsymbol{z} + \boldsymbol{b})_{\boldsymbol{c}}$$

REVE: Regularizing Deep Learning with Variational Entropy Bound - ICIP 2019

$$\Omega_{\mathsf{REVE}} = -\frac{1}{NS} \sum_{n=1}^{N} \sum_{s=1}^{S} \left(\log q(\mathbf{z}_{n,s}) + \log r(\mathbf{c}_n \mid \mathbf{z}_{n,s}) \right)$$

Variational approximation $q(\mathbf{z})$: how to model Z?

Bimodal Approximation

Model

→ Independence between coordinates:

$$q(\boldsymbol{z}) = \prod_{i=1}^{\dim(\mathcal{Z})} q(z_i)$$

→ Bimodal approximation:

$$q(z_i) = \alpha_i \mathcal{N}(z_i \mid \mu_{1,i}, \sigma_{1,i}^2) + (1 - \alpha_i) \mathcal{N}(z_i \mid \mu_{0,i}, \sigma_{0,i}^2).$$

→ α_i : probability of the semantic attribute being present. → $\alpha, \mu_1, \sigma_1^2, \mu_0, \sigma_0^2$ to determine.

Compute the Parameters

Expectation Maximization for two Gaussian Mixture Model?

- → Expensive
- → The size of the mini-batches is in general too small for obtaining a coherent model

Mini-batch Computation

- → We assume $P(M_i = 1 | z_i) = \sigma(z_i)$ (e.g. σ the sigmoid function)
- \rightarrow On the mini-batch, $\alpha_i = \sum_n \sigma(z_i^{(n)})$, $\mu_{1,i} = \sum_n \frac{\sigma(z_i^{(n)})}{\alpha_i} z_i^{(n)}$,...

REVE Loss

$$\Omega_{\mathsf{REVE}}((\boldsymbol{x}_n, \boldsymbol{c}_n); \boldsymbol{W}_e; \boldsymbol{W}_d) = -\frac{1}{NS} \sum_{n=1}^{N} \sum_{s=1}^{S} \left[\log \mathcal{S}(\boldsymbol{W}_d \boldsymbol{z}_{n,s} + \boldsymbol{b})_{\boldsymbol{c}_n} \right]$$

+
$$\sum_{i=1} \log \left(\alpha_i \mathcal{N}(z_{n,s,i} \mid \mu_{1,i}, \sigma_{1,i}^2) + (1 - \alpha_i) \mathcal{N}(z_{n,s,i} \mid \mu_{0,i}, \sigma_{0,i}^2) \right) \right].$$

Reve Performance Analysis. Classification error (%) results on CIFAR-10 and CIFAR-100 test sets.

	CIFA	R-10	CIFAR-100		
	AlexNet	Inception	AlexNet	Inception	
Baseline	15.62	6.10	48.29	27.36	
SGM Reve	14.24	6.17	-	-	
KDE Reve	13.86	6.04	-	-	
Reve	13.92	5.92	48.07	26.94	
Reve + DO	12.54	5.78	41.13	26.02	

Results

Classification error (%) results on CIFAR test sets.

	CIFAR-10			CIFAR-100		
	AlexNet	Inception Net	ResNet	AlexNet	Inception Net	ResNet
Baseline	15.62	6.10	4.08	48.29	27.36	20.70
Dropout	12.63	6.04	3.93	41.32	27.26	20.16
Information DO	14.97	6.04	NC	47.97	27.34	NC
Shade + DO	13.93	5.90	4.30	41.25	26.99	20.37
Reve + DO	12.54	5.78	3.88	41.13	26.02	20.05

Classification error (%) results on SVHN test set.

	SVHN					
	AlexNet	Inception Net	ResNet			
Baseline Reve	7.68 6.55	3.78 3.29	3.40 3.11			

- \rightarrow REVE is a tractable regularization loss for image classification
- → Identifies the part of the representation orthogonal to the kernel of the classifier as the variable to constrain
- $\rightarrow\,$ Penalizes the conditional entropy of the REVE variable given the class
- → REVE shows consistent positive results on multiple architectures and datasets

Thank you for your attention!

REVE: Regularizing Deep Learning with Variational Entropy Bound – ICIP 2019

SHADE

 \thickapprox Effect of SHADE: Reduction of conditional entropy

- → Layer-wise criterion: $\Omega_{\text{SHADE}} = \sum_{l=1}^{L} \sum_{i=1}^{D_l} H(Y_{l,i} \mid C)$
- → Uses a latent Bernoulli variable *B* as minimal sufficient statistic of *C* for *Y*: I(Y, C) = I(Y, B)