D-FW: Communication Efficient Distributed Algorithms for High-dimensional Sparse Optimization

Jean Lafond[†], **Hoi-To Wai[‡]** and Eric Moulines[#]

[†]Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, Paris, France. [‡]School of ECEE, Arizona State University, USA. [#]CMAP, Ecole Polytechnique, Palaiseau, France.

Acknowledgement: Direction Générale de l'Armement and the labex LMH (ANR-11-LABX-0056-LMH), NSF CCF-1011811.

*Equal contribution from J. Lafond and H.-T. Wai.

High-dimensional, distributed sparse optimization

What do we need?

Problem of Interest

Consider optimization problems of the form:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^n} F(\boldsymbol{\theta}) := \frac{1}{T} \sum_{s=1}^T f_s(\boldsymbol{\theta}) \text{ s.t. } \|\boldsymbol{\theta}\|_1 \le r$$
(1)

- *f_s* : ℝⁿ → ℝ − strongly convex, continuously differentiable objective fct. of agent *s*.
- T number of *agents* cooperating, moderately sized, $T \approx 10$ to 100.
- n dimension of parameter to be estimated, $n \approx 10^4$ to $10^6 \gg 0$.
- Optimal solution to (1) is *sparse*, $\|\boldsymbol{\theta}^{\star}\|_{0} \ll n$.
- ► Applications: sparse recovery, high-dimensional regression, etc.

This work:

- ▶ distributed, computation & communication efficient algorithms for (1).
- convergence rate analysis of the proposed algorithms.

Prior Work

Focuses on improving the scalability, e.g., distributed proximal/projected gradient (D-PG) [RNV10, RNV12]. Let t ∈ N be the iteration number, the sth agent does:

$$\boldsymbol{\theta}_{t+1}^{s} = \mathcal{P}_{\mathcal{C}}\left(\sum_{s'=1}^{T} W_{ss'}\boldsymbol{\theta}_{t}^{s'} - \alpha_{t}\nabla f_{s}\left(\sum_{s'=1}^{T} W_{ss'}\boldsymbol{\theta}_{t}^{s'}\right)\right), \tag{2}$$

in-network parameter exchange

- While θ^* is sparse, intermediate iterates θ_t^s in D-PG is *not sparse!*
- Per-iteration communication cost for D-PG (and its variants) is high.
- ▶ Related works for different types of problems [JST⁺14, BLG⁺14].

Agenda

- Frank-Wolfe algorithm Recent results on stochastic FW
- 2 Distributed FW algorithms for sparse optimization DistFW algorithm for star networks DeFW algorithm for general networks Convergence Analysis
- 3 Numerical Experiment
- 4 Conclusions & Future Work

Frank-Wolfe (FW) algorithm

(a.k.a. conditional gradient, projection-free optimization, etc.)

- ▶ A classical, first order algorithm with recent interests [FW56].
- Applications in machine learning and solving high-dimensional problems, e.g., matrix completion, sparse optimization [Jag13].
- Believed to be slow with sublinear convergence O(1/t) [CC68].
- Recent results demonstrated cases where linear convergence rate $\mathcal{O}((1-\rho)^t)$ can be achieved [LJJ13].
- Analysis of its stochastic variants [LWM15, LZ14].

Suppose that C is a polytope, $C = \operatorname{conv}\{a^1, a^2, ..., a^d\}$.

Frank-Wolfe Algorithm [FW56]:

- 1. For iteration t = 0, 1, 2, ...
- 2. Linear optimization (LO): $\boldsymbol{a}_t \leftarrow \arg \min_{\boldsymbol{a} \in \mathcal{C}} \langle \nabla F(\boldsymbol{\theta}_t), \boldsymbol{a} - \boldsymbol{\theta}_t \rangle.$
- 3. Update the iterate: $\theta_{t+1} \leftarrow (1 - \gamma_t)\theta_t + \gamma_t a_t$, where $\gamma_t = 2/(t+2)$.
- 4. Repeat Step 2 to 3.

Convergence of FW algorithm [FW56]

If $F(\theta)$ is convex and continuously differentiable, then

$$F(\boldsymbol{ heta}_t) - F(\boldsymbol{ heta}^{\star}) = \mathcal{O}(1/t)$$

(3)

Suppose that C is a polytope, $C = \operatorname{conv}\{a^1, a^2, ..., a^d\}$.

Frank-Wolfe Algorithm [FW56]:

- 1. For iteration t = 0, 1, 2, ...
- 2. Linear optimization (LO): $\boldsymbol{a}_t \leftarrow \arg\min_{\boldsymbol{a} \in \mathcal{C}} \langle \nabla F(\boldsymbol{\theta}_t), \boldsymbol{a} - \boldsymbol{\theta}_t \rangle.$

3. Update the iterate:

$$\boldsymbol{\theta}_{t+1} \leftarrow (1 - \gamma_t)\boldsymbol{\theta}_t + \gamma_t \boldsymbol{a}_t,$$

where $\gamma_t = 2/(t+2).$

Convergence of FW algorithm [FW56]

If $F(\theta)$ is convex and continuously differentiable, then

$$F(\boldsymbol{ heta}_t) - F(\boldsymbol{ heta}^{\star}) = \mathcal{O}(1/t).$$

(3)

Case of stochastic gradient – stochastic FW

- Suppose that an *inexact/stochastic* gradient ∇
 _tF(θ_t) is used in the LO in lieu of ∇F(θ_t) ⇒ stochastic FW (sFW) algorithm.
- ▶ Assumption: with high probability (w.h.p.) the following holds,

$$\|\hat{\nabla}_t F(\boldsymbol{\theta}_t) - \nabla F(\boldsymbol{\theta}_t)\|_{\infty} = \mathcal{O}(\sqrt{1/t}), \ \forall \ t \ge 1, \tag{H1}$$

Convergence of sFW algorithm [LWM15]

Under (H1), we have w.h.p. $F(\theta_t) - F(\theta^*) = \mathcal{O}(\sqrt{1/t})$. Furthermore, if F is strongly convex and $\theta^* \in int(\mathcal{C})$, we have w.h.p.

$$\mathsf{F}(\boldsymbol{\theta}_t) - \mathsf{F}(\boldsymbol{\theta}^{\star}) = \mathcal{O}(1/t). \tag{4}$$

Linear Optimization Oracle

▶ In the case of
$$\ell_1$$
 ball, $C = \{ \boldsymbol{\theta} : \|\boldsymbol{\theta}\|_1 \leq r \}$, we have

$$\boldsymbol{a}_{t} = -r \cdot \operatorname{sign}([\nabla F(\boldsymbol{\theta}_{t})]_{i_{t}}) \cdot \boldsymbol{e}_{i_{t}}, \qquad (5)$$

where $i_t = \arg \max_{j \in [n]} |[\nabla F(\boldsymbol{\theta}_t)]_j|$.

Properties —

- 1. The update performed at iteration t, a_t , is 1-sparse!
- 2. Finding a_t needs only maximum magnitude coordinate in $\nabla F(\theta_t)$ and the corresponding sign.

Distributed FW algorithms

- Main idea: to mimic the FW (or sFW) algorithm via in-network computations.
- ▶ We propose two schemes for different network topologies:

Distributed FW (DistFW) algorithm

Setting: \exists hub agent all T agents can communicate with.

• Aggregating phase: the hub agent computes $\hat{\nabla}_t F(\theta_t)$ by:

$$\hat{\nabla}_t F(\boldsymbol{\theta}_t) = (1/T) \sum_{s=1}^T \nabla f_s(\boldsymbol{\theta}_t).$$
 (6)

Broadcasting phase: based on Ŷ_tF(θ_t), the hub agent computes a_t from (5) and broadcast a_t to agents. The agents perform the individual updates by θ_{t+1} = (1 − γ_t)θ_t + γ_ta_t.

Distributed FW (DistFW) algorithm

Setting: \exists hub agent all T agents can communicate with.

• Aggregating phase: the hub agent computes $\hat{\nabla}_t F(\theta_t)$ by:

$$\hat{\nabla}_t F(\boldsymbol{\theta}_t) = (1/T) \sum_{s=1}^T \nabla f_s(\boldsymbol{\theta}_t).$$
(6)

Broadcasting phase: based on ∇̂_tF(θ_t), the hub agent computes a_t from (5) and broadcast a_t to agents. The agents perform the individual updates by θ_{t+1} = (1 − γ_t)θ_t + γ_ta_t.

Communication efficiencies

- **X** Aggregating: requires $\nabla f_s(\theta_t)$ from the agents, maybe dense.
- **•** \checkmark **Broadcasting**: involves a_t that is only 1-sparse.
- ► \checkmark Our remedy: agent *s* "sparsifies" its own $\nabla f_s(\theta_t)$ to a p_t -sparse $(p_t \ll n)$ vector before communicating:
 - ▶ Random Coordinate Selection Agent *s* selects the coordinate $i \in [n] := \{1, ..., n\}$ with probability p_t/n .
 - Extremal Coordinate Selection Agent *s* sorts $\nabla f_s(\theta_t)$ and selects $p_t/2$ coordinates that correspond to the max. and min. elements in the vector.

▶ Recall: the LO oracle only cares about the max. magnitude elements in $\nabla F(\theta_t)$.

Communication efficiencies

- ▶ **X** Aggregating: requires $\nabla f_s(\theta_t)$ from the agents, maybe dense.
- **For a set of the set**
- ✓ Our remedy: agent s "sparsifies" its own ∇f_s(θ_t) to a p_t-sparse (p_t ≪ n) vector before communicating:
 - ▶ Random Coordinate Selection Agent *s* selects the coordinate $i \in [n] := \{1, ..., n\}$ with probability p_t/n .
 - Extremal Coordinate Selection Agent s sorts ∇f_s(θ_t) and selects p_t/2 coordinates that correspond to the max. and min. elements in the vector.

• Recall: the LO oracle only cares about the max. magnitude elements in $\nabla F(\theta_t)$.

Decentralized FW (DeFW) algorithm

- Setting: agents are connected via a graph G = (V, E).
- Let $\bar{\theta}_t := (1/T) \sum_{s=1}^T \theta_t^s$. Our challenges are:
 - Aggregating computing $\hat{\nabla}_t F(\bar{\theta}_t) \approx \nabla F(\bar{\theta}_t) = (1/T) \sum_{s=1}^T \nabla f_s(\bar{\theta}_t)$.
 - Consensus the local parameters θ_t^s should be close to $\bar{\theta}_t$.

▶ Gossip-based average consensus (G-AC) subroutine [DKM+10] –

 $\texttt{input}: \{ \textbf{\textit{x}}_{s,0} \}_{s \in [T]} - \texttt{initial values held by the agents}$ repeat for $\ell = 0, 1, ..., \ell_t$:

$$\texttt{gossip upd}: \; \boldsymbol{x}^{s,\ell+1} = \sum_{s' \in \mathcal{N}_s} \mathcal{W}_{ss'} \boldsymbol{x}^{s',\ell}, \; \forall s \in [T],$$

 $ext{output}: oldsymbol{x}^{s,\ell_t} pprox (1/\mathcal{T}) \sum_{s'=1}^{\mathcal{T}} W_{ss'} oldsymbol{x}^{s',0}$ - the average

where $\boldsymbol{W} \in \mathbb{R}^{T \times T}_+$ is a doubly stochastic, weighted adj. matrix of G $\boldsymbol{\vee}$ – Geometric convergence – $\|\boldsymbol{x}^{s,\ell_t} - (1/T)\sum_{s=1}^T \boldsymbol{x}^{s,0}\|_{\infty} = \mathcal{O}(\lambda_2(\boldsymbol{W})^{\ell_t}).$

Decentralized FW (DeFW) algorithm

- **Setting**: agents are connected via a graph G = (V, E).
- We want to compute averages over the network!
- ► Gossip-based average consensus (G-AC) subroutine [DKM⁺10] -

input: $\{x_{s,0}\}_{s \in [T]}$ - initial values held by the agents repeat for $\ell = 0, 1, ..., \ell_t$:

$$\texttt{gossip upd}: \; \pmb{x}^{s,\ell+1} = \sum_{s' \in \mathcal{N}_s} \textit{W}_{ss'} \pmb{x}^{s',\ell}, \; \forall s \in [\textit{T}],$$

output : $\pmb{x}^{s,\ell_t} pprox (1/\mathcal{T}) \sum_{s'=1}^{\mathcal{T}} W_{ss'} \pmb{x}^{s',0}$ - the average

where $\boldsymbol{W} \in \mathbb{R}^{T \times T}_+$ is a doubly stochastic, weighted adj. matrix of G $\boldsymbol{\vee}$ - Geometric convergence - $\|\boldsymbol{x}^{s,\ell_t} - (1/T)\sum_{s=1}^T \boldsymbol{x}^{s,0}\|_{\infty} = \mathcal{O}(\lambda_2(\boldsymbol{W})^{\ell_t}).$

- Aggregating: apply the G-AC subroutine by setting $\mathbf{x}^{s,0} = \nabla f_s(\boldsymbol{\theta}_t^s)$ and $\ell_t = \Omega(\log t) \Longrightarrow$ each agent has an $\mathcal{O}(1/\sqrt{t})$ -estimate of $\nabla F(\bar{\boldsymbol{\theta}}_t)$.
- Each agent computes \boldsymbol{a}_t^s using the estimate of $\nabla F(\bar{\boldsymbol{\theta}}_t)$.
- **Consensus**: apply the G-AC subroutine by setting $\mathbf{x}^{s,0} = \boldsymbol{\theta}_{t+1}^s$ and $\ell_t = \Omega(\log t) \Longrightarrow$ each agent has an $\mathcal{O}(1/\sqrt{t})$ -estimate of $\bar{\boldsymbol{\theta}}_{t+1}^s$

Communication Cost —

- ▶ \checkmark for *consensus step*, θ_t^s is at most $t \cdot T \ll n$ sparse
- \checkmark for aggregating step, we 'sparsify' $\nabla f_s(\theta_t^s)$ like in DistFW.

• Aggregating: apply the G-AC subroutine by setting $\mathbf{x}^{s,0} = \nabla f_s(\boldsymbol{\theta}_t^s)$ and $\ell_t = \Omega(\log t) \Longrightarrow$ each agent has an $\mathcal{O}(1/\sqrt{t})$ -estimate of $\nabla F(\bar{\boldsymbol{\theta}}_t)$.

• Each agent computes a_t^s using the estimate of $\nabla F(\bar{\theta}_t)$.

► **Consensus**: apply the G-AC subroutine by setting $\mathbf{x}^{s,0} = \boldsymbol{\theta}_{t+1}^s$ and $\ell_t = \Omega(\log t) \Longrightarrow$ each agent has an $\mathcal{O}(1/\sqrt{t})$ -estimate of $\bar{\boldsymbol{\theta}}_{t+1}^s$

Communication Cost —

- ▶ \checkmark for consensus step, θ_t^s is at most $t \cdot T \ll n$ sparse
- ▶ \checkmark for aggregating step, we 'sparsify' $\nabla f_s(\theta_t^s)$ like in DistFW.

Convergence Analysis

- ▶ With randomized co-ord. selection, DistFW & DeFW \approx sp. cases of sFW.
- Analyzing the convergence (rate) requires verifying (H1).

Convergence of DistFW and DeFW algorithms (informal)

For DistFW and DeFW with *rand. coordinate selection scheme*, if $p_t = \Omega(\sqrt{t})$ and $\ell_t = \Omega(\log(t))$, then (H1) holds. The following holds w.h.p. if *F* is strongly convex and $\theta^* \in int(\mathcal{C})$, $F(\bar{\theta}_t) - F(\theta^*) = \mathcal{O}(1/t).$

To achieve F(θ_t) − F(θ^{*}) ≤ ε, we need Ω(1/ε) iterations and communicating ~ (1/ε)^{3/2} (for DistFW) and ~ (1/ε)² · log(1/ε) (for DeFW) non-zero real numbers ⇒ Independent of n!

Convergence rate comparisons

	DeFW (proposed)	PG-EXTRA ¹	D-PG ²
Primal opt.: $F(ar{m{ heta}}_t) - F(m{ heta}^\star)$	$\mathcal{O}(1/t)$	$\mathcal{O}(1/t)$	$\mathcal{O}(1/t)$
Comm. cost at iter. t	$\sim t \cdot T$	\sim n	\sim n
Comp. complexity at iter. t	$\sim \sqrt{t}$	\sim n	\sim n
Comm. cost for ϵ -optimality	$\sim (1/\epsilon)^2 \log(1/\epsilon)$	$\sim (1/\epsilon) \cdot n$	$\sim (1/\epsilon) \cdot n$

In terms of the communication cost...

- Low accuracy (when ϵ is large), DeFW > PG-EXTRA or D-PG.
- High accuracy (when ϵ is small), DeFW < PG-EXTRA or D-PG.

D-FW: Communication Efficient Distributed Algorithms

¹[SLWY15] W. Shi, Q. Ling, G. Wu, and W. Yin, "A Proximal Gradient Algorithm for Decentralized Composite Optimization," TSP, 2015.

²[RNV10] S. S. Ram, A. Nedic, and V. V. Veeravalli, "Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization," J. Optim. Theory. Appl., Dec., 2010.

Numerical Experiment – Settings

We apply DeFW on a distributed LASSO problem:

$$\min_{\boldsymbol{\theta}} \ \frac{1}{20} \sum_{s=1}^{20} \|\boldsymbol{y}_s - \boldsymbol{A}_s \boldsymbol{\theta}\|_2^2 \quad \text{s.t.} \ \|\boldsymbol{\theta}\|_1 \le r,$$
(7)

- Dimensions $n = 5 \times 10^4$, T = 20 and $A_s \in \mathbb{R}^{50 \times 50000}$
- ► Parameters $y_s \sim \mathcal{N}(\boldsymbol{A}_s \boldsymbol{\theta}_{true}, 0.01 \boldsymbol{I}), \|\boldsymbol{\theta}_{true}\|_0 = 25 \text{ and } r = 1.5 \|\boldsymbol{\theta}_{true}\|_1.$
- Network G = (V, E) is Erdos-Renyi graph with connectivity p = 0.3, weights on W follows the Metropolis-Hastings rule [XB04].
- DeFW we set $p_t = 2\lceil \sqrt{t} \rceil$, $\ell_t = \lceil \log(t) + 5 \rceil$.
- ▶ Benchmark D-PG [RNV10] with step size $\alpha_t = 0.8/t$, PG-EXTRA [SLWY15] with fixed step size $\alpha = 1/n \approx 1/L$.

Fig. Comparing the primal objective value $F(\theta_t) = (1/T) \sum_{s=1}^{T} f_s(\theta_t^s)$. (Left) against the iteration number. (Right) against the number of real numbers communicated.

- PG-EXTRA outperforms DeFW (rand) at high accuracy.
- DeFW (extreme) outperforms the competing algorithms.

Conclusions, Future work

To conclude,

- We proposed two distributed FW-based algorithms for high-dimensional sparse optimization.
- ► Applied recent results on stochastic FW to analyze its performance.
- > Proposed algorithms offer trade-offs between comm. cost and accuracy.

Future work —

- ► Asynchronous and fully parallel computations variants of D-FW.
- ► Analyze the performance with extreme coordinate selection.
- Extend D-FW to matrix completion problems.
- Implement and test D-FW on computer networks using real data set.

Questions?

[BLG ⁺ 14]	Aurélien Bellet, Yingyu Liang, Alireza Bagheri Garakani, Maria-Florina Balcan, and Fei Sha. A Distributed Frank-Wolfe Algorithm for		An affine invariant linear convergen- frank-wolfe algorithms. In <i>NIPS</i> , 2013.	ce analysis for
	Communication-Efficient Sparse Learning. pages 1–19, 2014.	[LWM15]	Jean Lafond, Hoi-To Wai, and Eric Moulines. Convergence analysis of a stochastic projection-free	
[CC68] M. D. Canon A tight uppe frank-wolfe a <i>SIAM Journa</i>	M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of		algorithm. ArXiv e-prints (1510.01171), 2015.	
	frank-wolfe algorithm. SIAM Journal on Control, 6(4), 1968.	[LZ14]	Guanghui Lan and Yi Zhou. Conditional gradient sliding for conv	vex optimization.
[DKM ⁺ 10] A. G. Dimakis, S. Kar, J. M. A. Scaglione. Gossip Algorithms for Distrib <i>Proc. IEEE</i> , 98(11):1847–18	A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and		Technical Report, 2014.	
	A. Scaglione. Gossip Algorithms for Distributed Signal Processing. <i>Proc. IEEE</i> , 98(11):1847–1864, November 2010.	[RNV10]	 S. Sundhar Ram, Angelia Nedic, and V. V. Veeravalli. Distributed stochastic subgradient projection algorithms for convex optimization. Journal of Optimization Theory and Applications, 147(3):516–545, December 2010. S. S. Ram, A. Nedic, and V. V. Veeravalli. A new class of distributed optimization algorithms : application to regression of distributed data. Optimization Methods and Software, (1):37–41, February 2012. 	
[FW56]	M. Frank and P. Wolfe. An algorithm for quadratic programming.			
[Jag13]	Naval Res. Logis. Quart., 1956. Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML, volume 28, pages 427–435, June 2013.	[RNV12]		
[JST ⁺ 14]	Martin Jaggi, Virginia Smith, Martin Takac, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, and Michael I Jordan. Communication-efficient distributed dual coordinate	[SLWY15]	 [SLWY15] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. A Proximal Gradient Algorithm for Decentralized Composite Optimization. <i>IEEE Trans. on Signal Process.</i>, pages 1–11, 2015. [XB04] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. <i>Systems & Control Letters</i>, 53(1):65–78, September 2004. 	
asc In [LJJ13] Sir	ascent. In <i>NIPS</i> , 2014. Simon Lacoste-Julien and Martin Jaggi.	[XB04]		
D_F	W. Communication Efficient Distributed Algorithms		Conclusions & Future Work	20 / 20