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High-dimensional, distributed sparse optimization

What do we need?

I Lots of data scattered around in the network =⇒ need scalable and

distributed algorithms
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Problem of Interest

I Consider optimization problems of the form:

min
θ∈Rn

F (θ) :=
1

T

T∑
s=1

fs(θ) s.t. ‖θ‖1 ≤ r (1)

I fs : Rn → R – strongly convex, continuously differentiable objective fct. of

agent s.

I T – number of agents cooperating, moderately sized, T ≈ 10 to 100.

I n – dimension of parameter to be estimated, n ≈ 104 to 106 � 0.

I Optimal solution to (1) is sparse, ‖θ?‖0 � n.

I Applications: sparse recovery, high-dimensional regression, etc.

This work:

I distributed, computation & communication efficient algorithms for (1).

I convergence rate analysis of the proposed algorithms.
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Prior Work

I Focuses on improving the scalability, e.g., distributed proximal/projected

gradient (D-PG) [RNV10, RNV12]. Let t ∈ N be the iteration number, the

sth agent does:

θs
t+1 = PC

( T∑
s′=1

Wss′θ
s′

t − αt∇fs(
T∑

s′=1

Wss′θ
s′

t︸ ︷︷ ︸
in-network parameter exchange

)
)
, (2)

I While θ? is sparse, intermediate iterates θs
t in D-PG is not sparse!

I Per-iteration communication cost for D-PG (and its variants) is high.

I Related works for different types of problems [JST+14, BLG+14].
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Frank-Wolfe (FW) algorithm

(a.k.a. conditional gradient, projection-free optimization, etc.)

I A classical, first order algorithm with recent interests [FW56].

I Applications in machine learning and solving high-dimensional problems,

e.g., matrix completion, sparse optimization [Jag13].

I Believed to be slow with sublinear convergence O(1/t) [CC68].

I Recent results demonstrated cases where linear convergence rate

O((1− ρ)t) can be achieved [LJJ13].

I Analysis of its stochastic variants [LWM15, LZ14].
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Suppose that C is a polytope, C = conv{a1, a2, ..., ad}.
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Frank-Wolfe Algorithm [FW56]:

1. For iteration t = 0, 1, 2, ...

2. Linear optimization (LO):

at ← arg mina∈C〈∇F (θt), a − θt〉.
3. Update the iterate:

θt+1 ← (1− γt)θt + γtat , where

γt = 2/(t + 2).

4. Repeat Step 2 to 3.

Convergence of FW algorithm [FW56]

If F (θ) is convex and continuously differentiable, then

F (θt)− F (θ?) = O(1/t). (3)
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Case of stochastic gradient – stochastic FW

I Suppose that an inexact/stochastic gradient ∇̂tF (θt) is used in the LO in

lieu of ∇F (θt) =⇒ stochastic FW (sFW) algorithm.

I Assumption: with high probability (w.h.p.) the following holds,

‖∇̂tF (θt)−∇F (θt)‖∞ = O(
√

1/t), ∀ t ≥ 1, (H1)

Convergence of sFW algorithm [LWM15]

Under (H1), we have w.h.p. F (θt)− F (θ?) = O(
√

1/t). Furthermore, if F is

strongly convex and θ? ∈ int(C), we have w.h.p.

F (θt)− F (θ?) = O(1/t). (4)
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Linear Optimization Oracle

I In the case of `1 ball, C = {θ : ‖θ‖1 ≤ r}, we have

at = −r · sign([∇F (θt)]it ) · eit , (5)

where it = arg maxj∈[n] |[∇F (θt)]j |.

Properties —

1. The update performed at iteration t, at , is 1-sparse!

2. Finding at needs only maximum magnitude coordinate in ∇F (θt) and

the corresponding sign.
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Distributed FW algorithms

I Main idea: to mimic the FW (or sFW) algorithm via in-network

computations.

I We propose two schemes for different network topologies:

Agent 1 Agent 2 Agent 3 Agent T

Hub agent

Agent 1

Agent 2

Agent T

Distributed FW (DistFW) Decentralized FW (DeFW)
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Distributed FW (DistFW) algorithm

I Setting: ∃ hub agent all T agents can communicate with.

Agent 1 Agent 2 Agent 3 Agent T

Hub agent

rf1(✓t)

rf3(✓t)
rfT (✓t)rf2(✓t)

I Aggregating phase: the hub agent computes ∇̂tF (θt) by:

∇̂tF (θt) = (1/T )
∑T

s=1∇fs(θt). (6)

I Broadcasting phase: based on ∇̂tF (θt), the hub agent computes at from

(5) and broadcast at to agents. The agents perform the individual updates

by θt+1 = (1− γt)θt + γtat .
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Communication efficiencies
I 7 Aggregating: requires ∇fs(θt) from the agents, maybe dense.

I 3 Broadcasting: involves at that is only 1-sparse.

I 3 Our remedy: agent s “sparsifies” its own ∇fs(θt) to a pt-sparse

(pt � n) vector before communicating:

I Random Coordinate Selection — Agent s selects the coordinate

i ∈ [n] := {1, ..., n} with probability pt/n.

I Extremal Coordinate Selection — Agent s sorts ∇fs(θt) and selects pt/2

coordinates that correspond to the max. and min. elements in the vector.

I Recall: the LO oracle only cares about the max. magnitude elements in

∇F (θt).
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Decentralized FW (DeFW) algorithm

I Setting: agents are connected via a graph G = (V ,E ).

I Let θ̄t := (1/T )
∑T

s=1 θ
s
t . Our challenges are:

I Aggregating – computing ∇̂tF (θ̄t) ≈ ∇F (θ̄t) = (1/T )
∑T

s=1∇fs(θ̄t).

I Consensus – the local parameters θs
t should be close to θ̄t .

I Gossip-based average consensus (G-AC) subroutine [DKM+10] –

input : {xs,0}s∈[T ] – initial values held by the agents

repeat for ` = 0, 1, ..., `t :

gossip upd : x s,`+1 =
∑
s′∈Ns

Wss′x s′,`, ∀s ∈ [T ],

output : x s,`t ≈ (1/T )
∑T

s′=1 Wss′x s′,0 – the average

where W ∈ RT×T
+ is a doubly stochastic, weighted adj. matrix of G

I 3 – Geometric convergence – ‖x s,`t − (1/T )
∑T

s=1 x s,0‖∞ = O(λ2(W )`t ).
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Agent 1

Agent 2

Agent T

rf2(✓
2
t )

I Aggregating: apply the G-AC subroutine by setting x s,0 = ∇fs(θs
t ) and

`t = Ω(log t) =⇒ each agent has an O(1/
√
t)-estimate of ∇F (θ̄t).

I Each agent computes as
t using the estimate of ∇F (θ̄t).

I Consensus: apply the G-AC subroutine by setting x s,0 = θs
t+1 and

`t = Ω(log t) =⇒ each agent has an O(1/
√
t)-estimate of θ̄s

t+1

Communication Cost —

I 3 — for consensus step, θs
t is at most t · T � n sparse

I 3 — for aggregating step, we ‘sparsify’ ∇fs(θs
t ) like in DistFW.
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Convergence Analysis

I With randomized co-ord. selection, DistFW & DeFW ≈ sp. cases of sFW.

I Analyzing the convergence (rate) requires verifying (H1).

Convergence of DistFW and DeFW algorithms (informal)

For DistFW and DeFW with rand. coordinate selection scheme, if pt = Ω(
√
t) and

`t = Ω(log(t)), then (H1) holds. The following holds w.h.p. if F is strongly convex

and θ? ∈ int(C),
F (θ̄t)− F (θ?) = O(1/t).

I To achieve F (θt)− F (θ?) ≤ ε, we need Ω(1/ε) iterations and

communicating ∼ (1/ε)3/2 (for DistFW) and ∼ (1/ε)2 · log(1/ε) (for

DeFW) non-zero real numbers =⇒ Independent of n!
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Convergence rate comparisons

DeFW (proposed) PG-EXTRA1 D-PG2

Primal opt.: F (θ̄t)− F (θ?) O(1/t) O(1/t) O(1/t)

Comm. cost at iter. t ∼ t · T ∼ n ∼ n

Comp. complexity at iter. t ∼
√
t ∼ n ∼ n

Comm. cost for ε-optimality ∼ (1/ε)2 log(1/ε) ∼ (1/ε) · n ∼ (1/ε) · n

In terms of the communication cost...

I Low accuracy (when ε is large), DeFW > PG-EXTRA or D-PG.

I High accuracy (when ε is small), DeFW < PG-EXTRA or D-PG.

1
[SLWY15] W. Shi, Q. Ling, G. Wu, and W. Yin, “A Proximal Gradient Algorithm for Decentralized Composite Optimization,” TSP, 2015.

2
[RNV10] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization,”

J. Optim. Theory. Appl., Dec., 2010.
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Numerical Experiment – Settings

We apply DeFW on a distributed LASSO problem:

min
θ

1

20

20∑
s=1

‖ys − Asθ‖2
2 s.t. ‖θ‖1 ≤ r , (7)

I Dimensions — n = 5× 104, T = 20 and As ∈ R50×50000

I Parameters — ys ∼ N (Asθtrue , 0.01I ), ‖θtrue‖0 = 25 and r = 1.5‖θtrue‖1.

I Network — G = (V ,E ) is Erdos-Renyi graph with connectivity p = 0.3,

weights on W follows the Metropolis-Hastings rule [XB04].

I DeFW — we set pt = 2d
√
te, `t = dlog(t) + 5e.

I Benchmark — D-PG [RNV10] with step size αt = 0.8/t, PG-EXTRA

[SLWY15] with fixed step size α = 1/n ≈ 1/L.
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Fig. Comparing the primal objective value F (θt) = (1/T )
∑T

s=1 fs(θs
t ). (Left) against the

iteration number. (Right) against the number of real numbers communicated.

I PG-EXTRA outperforms DeFW (rand) at high accuracy.

I DeFW (extreme) outperforms the competing algorithms.
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Conclusions, Future work

To conclude,

I We proposed two distributed FW-based algorithms for high-dimensional

sparse optimization.

I Applied recent results on stochastic FW to analyze its performance.

I Proposed algorithms offer trade-offs between comm. cost and accuracy.

Future work —

I Asynchronous and fully parallel computations variants of D-FW.

I Analyze the performance with extreme coordinate selection.

I Extend D-FW to matrix completion problems.

I Implement and test D-FW on computer networks using real data set.
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[BLG+14] Aurélien Bellet, Yingyu Liang, Alireza Bagheri Garakani,

Maria-Florina Balcan, and Fei Sha.

A Distributed Frank-Wolfe Algorithm for

Communication-Efficient Sparse Learning.

pages 1–19, 2014.

[CC68] M. D. Canon and C. D. Cullum.

A tight upper bound on the rate of convergence of

frank-wolfe algorithm.

SIAM Journal on Control, 6(4), 1968.

[DKM+10] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and

A. Scaglione.

Gossip Algorithms for Distributed Signal Processing.

Proc. IEEE, 98(11):1847–1864, November 2010.

[FW56] M. Frank and P. Wolfe.

An algorithm for quadratic programming.

Naval Res. Logis. Quart., 1956.

[Jag13] Martin Jaggi.

Revisiting frank-wolfe: Projection-free sparse convex

optimization.

In ICML, volume 28, pages 427–435, June 2013.

[JST+14] Martin Jaggi, Virginia Smith, Martin Takac, Jonathan

Terhorst, Sanjay Krishnan, Thomas Hofmann, and

Michael I Jordan.

Communication-efficient distributed dual coordinate

ascent.

In NIPS, 2014.

[LJJ13] Simon Lacoste-Julien and Martin Jaggi.

An affine invariant linear convergence analysis for

frank-wolfe algorithms.

In NIPS, 2013.

[LWM15] Jean Lafond, Hoi-To Wai, and Eric Moulines.

Convergence analysis of a stochastic projection-free

algorithm.

ArXiv e-prints (1510.01171), 2015.

[LZ14] Guanghui Lan and Yi Zhou.

Conditional gradient sliding for convex optimization.

Technical Report, 2014.

[RNV10] S. Sundhar Ram, Angelia Nedic, and V. V. Veeravalli.

Distributed stochastic subgradient projection algorithms for

convex optimization.

Journal of Optimzation Theory and Applications,

147(3):516–545, December 2010.

[RNV12] S. S. Ram, A. Nedic, and V. V. Veeravalli.

A new class of distributed optimization algorithms :

application to regression of distributed data.

Optimization Methods and Software, (1):37–41, February

2012.

[SLWY15] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin.

A Proximal Gradient Algorithm for Decentralized

Composite Optimization.

IEEE Trans. on Signal Process., pages 1–11, 2015.

[XB04] Lin Xiao and Stephen Boyd.

Fast linear iterations for distributed averaging.

Systems & Control Letters, 53(1):65–78, September 2004.

D-FW: Communication Efficient Distributed Algorithms Conclusions & Future Work 20 / 20


	Frank-Wolfe algorithm
	Recent results on stochastic FW

	Distributed FW algorithms for sparse optimization
	DistFW algorithm for star networks
	DeFW algorithm for general networks
	Convergence Analysis

	Numerical Experiment
	Conclusions & Future Work

