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High-dimensional, distributed sparse optimization

‘@ BASOLN Dy
2% QPQ 3 Het : * Py
Oxel) w!‘ SO ®,. %)
Yoo 2O A el e A

What do we need?

» Lots of data scattered around in the network = need scalable and
distributed algorithms
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Problem of Interest

» Consider optimization problems of the form:

;
min F(6) : Z st. [|6]lL <r (1)

OcR"

v

fs : R" — R — strongly convex, continuously differentiable objective fct. of
agent s.

» T — number of agents cooperating, moderately sized, T &~ 10 to 100.

» n — dimension of parameter to be estimated, n ~ 10* to 10° >> 0.

%o < n.

» Optimal solution to (1) i
» Applications: sparse recovery, high-dimensional regression, etc.
This work:
» distributed, computation & communication efficient algorithms for (1).

» convergence rate analysis of the proposed algorithms.
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Prior Work

> Focuses on improving the scalability, e.g., distributed proximal/projected
gradient (D-PG) [RNV10, RNV12]. Let t € N be the iteration number, the
sth agent does:

T T

01 = PC( Z W55/0f/ - O‘tvfs(z Wss/egl))’ 2)

s'=1 s'=1

in-network parameter exchange

» While 8” is sparse, intermediate iterates 6; in D-PG is not sparse!
> Per-iteration communication cost for D-PG (and its variants) is high.

> Related works for different types of problems [JST14, BLGT14].
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Frank-Wolfe (FW) algorithm

(a.k.a. conditional gradient, projection-free optimization, etc.)

> A classical, first order algorithm with recent interests [FW56].

» Applications in machine learning and solving high-dimensional problems,
e.g., matrix completion, sparse optimization [Jagl3].

v

Believed to be slow with sublinear convergence O(1/t) [CC68].

» Recent results demonstrated cases where linear convergence rate
O((1 — p)*) can be achieved [LJJ13].

Analysis of its stochastic variants [LWM15, LZ14].

v
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Suppose that C is a polytope, C = conv{al,a?, ...,a}.

Frank-Wolfe Algorithm [FW56]:
1. For iteration t =10,1,2, ...

2. Linear optimization (LO):
a; < argminaec(VF(6:),a— 0,).
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Suppose that C is a polytope, C = conv{a!,a?,...,a}.

Frank-Wolfe Algorithm [FW56]:
1. For iteration t =0,1,2,...

2. Linear optimization (LO):

¢ a; < argminaec(VF(6:),a—0;).
9yé+1 = (1 =)0 +veay

ve 3. Update the iterate:

0:11 < (1 —7:)0; + i@y,
where v; = 2/(t + 2).

4. Repeat Step 2 to 3.

Convergence of FW algorithm [FW56]

If F(@) is convex and continuously differentiable, then

F(6:) — F(0") = O(1/t). (3)
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Case of stochastic gradient — stochastic FW

» Suppose that an inexact/stochastic gradient V,F(8;) is used in the LO in
lieu of VF(0;) = stochastic FW (sFW) algorithm.

» Assumption: with high probability (w.h.p.) the following holds,
IVeF(8:) — VF(8:)lo = O(V1/t), ¥ t > 1, (H1)

Convergence of sFW algorithm [LWM15]

Under (H1), we have w.h.p. F(6:) — F(6*) = O(\/1/t). Furthermore, if F is
strongly convex and 6* € int(C), we have w.h.p.

F(6:) — F(67) = O(1/1). (4)

D-FW: Communication Efficient Distributed Algorithms Frank-Wolfe algorithm 8 /20



Linear Optimization Oracle

> In the case of ¢; ball, C = {0 : ||0]|1 < r}, we have
a, = —r-sign([VF(6:)];,) - e, (5)
where iy = arg max;c[y |[VF(0:)];]-
Properties —

1. The update performed at iteration t, a;, is 1-sparse!

2. Finding a; needs only maximum magnitude coordinate in VF(6,) and

the corresponding sign.
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Distributed FW algorithms

» Main idea: to mimic the FW (or sFW) algorithm via in-network

computations.

» We propose two schemes for different network topologies:

Agent T
Hub agent
Agent 2
Agent 1
e o o
Agent1  Agent2 Agent 3 Agent T
Distributed FW (DistFW) Decentralized FW (DeFW)
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Distributed FW (DistFW) algorithm

» Setting: 3 hub agent all T agents can communicate with.

O Hub agent

Vf1(6:)
VA0 | vy, Vfr(6:)
O O O O
Agent 1 Agent 2 Agent 3 Agent T

» Aggregating phase: the hub agent computes V.F(8;) by:
VeF(8:) = (1/T) X, VE(6). (6)
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Distributed FW (DistFW) algorithm

» Setting: 3 hub agent all T agents can communicate with.

Hub agent
ai
t

o3 O -0

Agent 1 Agent 2 Agent 3 Agent T
» Aggregating phase: the hub agent computes V.F(8;) by:
VeF(68:) = (1/T) S1, VA(6,). (6)

» Broadcasting phase: based on @tF(Ot), the hub agent computes a; from
(5) and broadcast a; to agents. The agents perform the individual updates
by 0t+1 = (1 — 'yt)et + Yeat-
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Communication efficiencies
> X Aggregating: requires V1;(0;) from the agents, maybe dense.

» v Broadcasting: involves a; that is only 1-sparse.
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Communication efficiencies
> X Aggregating: requires V1;(0;) from the agents, maybe dense.

> v Our remedy: agent s “sparsifies” its own V£(0;) to a p;-sparse
(pr < n) vector before communicating:
» Random Coordinate Selection — Agent s selects the coordinate
i € [n] :={1,..., n} with probability p:/n.
» Extremal Coordinate Selection — Agent s sorts V£(0;) and selects p;/2
coordinates that correspond to the max. and min. elements in the vector.

V(69 | Il | H B
Random
Extreme [ ] H B

» Recall: the LO oracle only cares about the max. magnitude elements in
VF(6:).
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Decentralized FW (DeFW) algorithm

> Setting: agents are connected via a graph G = (V, E).

> Let 8, := (1/T) Y.L, 65. Our challenges are:
> Aggregating — computing V.F(0;) ~ VF(8;) = (1/T) [, V£(8:).
» Consensus — the local parameters 6% should be close to 0;.
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Decentralized FW (DeFW) algorithm

» We want to compute averages over the network!
» Gossip-based average consensus (G-AC) subroutine [DKM*10] —
input : {Xs70}56[7-] — initial values held by the agents

repeat for ¢(=0,1,...,¢; :

gossip upd: x> = Z W, x5 ¢, Vs € [T],
s’eN;

output : x> e (1/7) E _1 WSS/XS,’O — the average

where W € RIXT is a doubly stochastic, weighted adj. matrix of G
> / — Geometric convergence — ||x5% — (1/T) 2L, x50|| .o = O(Xo(W)%).

D-FW: Communication Efficient Distributed Algorithms Distributed FW algorithms 13 /20



Agent T

Agent 2 :

AQG&B gf)w%
2\Yt

O O

» Aggregating: apply the G-AC subroutine by setting x50 = V£(6$) and
¢, = Q(log t) = each agent has an O(1/+/t)-estimate of VF(8,).

» Each agent computes a$ using the estimate of VF(8,).
Communication Cost —
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Agent T

Agent 2 /O
O:—0O
Agent1/ 02 )
O.

\O O

» Consensus: apply the G-AC subroutine by setting x*° = 0:,, and
l = Q(log t) => each agent has an O(1/+/t)-estimate of 65, ,
Communication Cost —
» v — for consensus step, 05 is at most t - T < n sparse
>  — for aggregating step, we ‘sparsify’ V1;(0%) like in DistFW.
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Convergence Analysis

» With randomized co-ord. selection, DistFW & DeFW = sp. cases of sFW.

> Analyzing the convergence (rate) requires verifying (H1).

Convergence of DistFW and DeFW algorithms (informal)

For DistFW and DeFW with rand. coordinate selection scheme, if p; = Q(+/t) and
£y = Q(log(t)), then (H1) holds. The following holds w.h.p. if F is strongly convex

and 6* ¢ int(C), F(6,) — F(0*) = O(1/t).

> To achieve F(0;) — F(6*) < ¢, we need Q(1/¢) iterations and
communicating ~ (1/€)3/2 (for DistFW) and ~ (1/¢)? - log(1/€) (for
DeFW) non-zero real numbers = Independent of n!
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Convergence rate comparisons

DeFW (proposed) | PG-EXTRA! D-PG?
Primal opt.: F(8;) — F(6*) O(1/t) O(1/t) O(1/t)
Comm. cost at iter. t ~t-T ~n ~n
Comp. complexity at iter. t ~ \/E ~n ~n

Comm. cost for e-optimality

~ (1/e) log(1/¢)

~(1/¢) - n

~(1/€) - n

In terms of the communication cost...

> Low accuracy (when € is large), DeFW > PG-EXTRA or D-PG.

> High accuracy (when ¢ is small), DeFW < PG-EXTRA or D-PG.

1[SLWYlS] W. Shi, Q. Ling, G. Wu, and W. Yin, “A Proximal Gradient Algorithm for Decentralized Composite Optimization,” TSP, 2015.

2[RNVlO] S. S. Ram, A. Nedic, and V. V. Veeravalli, "Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization,”

J. Optim. Theory. Appl., Dec., 2010.
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Numerical Experiment — Settings

We apply DeFW on a distributed LASSO problem:
1 X
min yoz lys — A3 st 6]l <r, 7)
» Dimensions — n =5 x 10* T = 20 and A, € [R50%50000
> Parameters — ys ~ N (AsOtre, 0.011), ||0¢rsello = 25 and r = 1.5(|0¢ruel|1-

> Network — G = (V, E) is Erdos-Renyi graph with connectivity p = 0.3,
weights on W follows the Metropolis-Hastings rule [XB04].

» DeFW — we set p; = 2[/t], £; = [log(t) + 5].
» Benchmark — D-PG [RNV10] with step size a; = 0.8/t, PG-EXTRA
[SLWY15] with fixed step size a = 1/n~1/L.
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Fig. Comparing the primal objective value F(6;) = (1/T) Z;l fs(07). (Left) against the

iteration number. (Right) against the number of real numbers communicated.
> PG-EXTRA outperforms DeFW (rand) at high accuracy.

> DeFW (extreme) outperforms the competing algorithms.
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Conclusions, Future work

To conclude,

» We proposed two distributed FW-based algorithms for high-dimensional
sparse optimization.

> Applied recent results on stochastic FW to analyze its performance.

» Proposed algorithms offer trade-offs between comm. cost and accuracy.

Future work —
» Asynchronous and fully parallel computations variants of D-FW.
» Analyze the performance with extreme coordinate selection.
» Extend D-FW to matrix completion problems.

» Implement and test D-FW on computer networks using real data set.
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