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Introduction



What iIs Human Age Estimation?

* As a Computer Vision Task

« Determine appearance age of a human from his near frontal photographs
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Existing Methods

 Feature Point Based Classifiers (Before 2012)

* Gabor Wavelet Based Methods
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Guo, Guodong, et al. "Human age estimation using bio-inspired
features." 2009 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 20009.




Existing Methods

« Convolutional Neural Network (After 2012)
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Levi, Gil, and Tal Hassner. "Age and gender classification using convolutional neural
networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 2015.



Existing Methods

Feature Based Classifiers Convolutional Neural Network

« Smaller number of parameters < High Performance
* Fully trainable

Pros

 Low performance  Larger number of parameters

Cons « Manual tuning of hyper-
parameters
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What We Want

Feature Based Classifiers Convolutional Neural Network

« Smaller number of parameters < High Performance
* Fully trainable




Our Approach



Why we used Gabor wavelets?

* Requires Small Number of Parameters:

2D Gabor wavelets can be obtained with only 4 parameters
(y, o, ,0) and sampling grid.

X +piy* 2
G(z,y) = exp (—) X COS (—WX)

1ot

X = :cco ysinf,Y = —xsinf +ycosf + Samp”ng Grid



Why we used Gabor wavelets?

 Feature Extractor that Effective in Textural information:

Gabor Wavelets Gabor Responses
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Challenges

How can we incorporate Gabor wavelets into CNN in the fully
trainable manner?



Estimation of Parameters of Gabor wavelets

» We can manipulate the characteristic of discrete 2D Gabor wavelet by
Its parameters (v, o, A, 0) and the size of sampling grid

* It means that we can train Gabor wavelets by estimating its parameters
and the sampling grid size.

X2 4422 o
G(x,y) = exp ( 52 ) X COS ()\X)

Equation of 2D Gabor wavelets



Modeling of Sampling Grid with ¢

* Intrinsic parameter v, o, A _has mathematical relationship to Gabor
wavelet

* We need to digitize the Gabor wavelet for actual implementation

* However, the sampling grid size has no connection with the equation
of Gabor wavelet

* S0 we Introduce a new parameter { to make a connection between
sampling grid size and Gabor wavelet



Modeling of Sampling Grid with ¢
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Fig. 2. Sampling grids for three ( values. Red, blue and green
dots are generated by (2) with { = 1.5, 1.9 and 2.5 respec-
tively.



Modeling of Sampling Grid with ¢
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Estimation of Parameters of Gabor wavelets

* CNN with 3x3 convolution was used for estimating parameters vy, o, A,
and  because

1. CNN with 3x3 convolution is the smallest one among practical CNN

2. ltis fully trainable



Estimation of Parameter 0

 The one last parameter to be determined is the orientation of the Gabor
wavelet, 0

Estimated by CNN

X = xcoysinH,Y = —xsinf +ycos® + Sampling Grid
Not yet estimated 4



Estimation of Parameter 6

 We address this problem by using a steering property that
convolution with Gabor wavelet of any orientation can be
represented with a linear combination of a finite set of responses
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Filtering Part of TGW
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Filtering by Gabor Filters
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Filtering Part of TGW
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Filtering Part of TGW
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Steering Part of TGW

10 Gabor wavelets are used as basis
(6 in [9°, 27°,45°,63°,81°,99°,117°, 135", 153°, and 171°])
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Steering Part of TGW

Steering by 1x1 Conv
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Trainable Gabor Wavelet (TGW)

Trainable Gabor Wavelet
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Proposed Human Age Estimation Network

Proposed Human Age Estimation Network
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Assign Different Role to Each Layer

Gabor wavelets act as feature extractor
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Features from TGW

Selected feature map 15t TGW layer of proposed network



Assign Different Role to Each Layer

Convolution wavelets work as classifier
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To sum up
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Feature extraction with
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To sum up
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Evaluation



Evaluation Dataset

* Adience Dataset

 Total 26,580 facial images of 2,284 identities whose ages are labeled in 8
classes

* Collected from Flicker
 Performance measure: Classification accuracy (%)

Label (= Class) 0 1 2 3 8



Ablation Study
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Fig. 4. The first layer in the baseline is replaced with the
following structures: (a) the structure for ‘M1" and ‘M3, (b)
the structure for ‘M2, and (c) the structure for ‘M4 and ‘M5’

M1: six fixed Gabor wavelets w/o a steering block: \ =
v = o = 1 in (1) and pre-defined 16 orientations are
used. In this case, 96 orientations are selected to be
equally spaced in [0, )

M2: six fixed Gabor wavelets with a steering block:
A=~ =0 = 1in(1)and pre-defined 10 orientations
are used.

M3: six fixed Gabor wavelets w/o a steering block: A\ =
Aos ¥ = 70, 0 = o where (A, 0, 00) are constants
from [5] and pre-defined 16 orientations are used.

M4: (a) five TGW layers training A, o and ~ and (b)
one 3 x 3 convolution layer, where (Ao, 0¢.v0) are set
as in [5].

M5: (a) 5 TGW layers training ¢ and (b) one 3 x 3
convolution layer, where (\g, 0¢, 7o) are set as in [5].



Ablation Study

e M5: (a) 5 TGW layers training ¢ and (b) one 3 x 3
convolution layer, where (\g, g, 7p) are set as in [5].
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Fig. 4. The first layer in the baseline is replaced with the
following structures: (a) the structure for ‘M1" and ‘M3, (b)
the structure for ‘M2, and (c) the structure for ‘M4 and ‘M5’




Settings of The Proposed Method

TGW 3x3 Conv
Layer

channels channels
— oo W
155 80
— / 3x3 Conv channels 130 160

TGF channels 105 240

80 320
55 400




Age Estimation Results

Table 3. Age classification result on Adience dataset.

Method Accuracy (%) Parameters
LBP [23] 41.1 -
LDP [18] 48.5 -
LDN [18] 51.4 -
Best from [4] 50.7 [IM
Extension of [4] 534 18M
Resnet-50 [17,20] 52.2 25M
Cascaded DCNN [19] 52.9 40M
PTP [18] 53.3 -
WC-CNN [24] 54.3 > 62M
I Ours (Proposed) 54.4 18M

[4]: Levi, Gil, and Tal Hassner. "Age and gender classification using convolutional neural
networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 2015.



Conclusion



Conclusion

* \We have proposed the Trainable Gabor Wavelet that can incorporate
Gabor wavelets into CNN in trainable manner.

* We also built an age estimation network with the proposed Trainable
Gabor Wavelet.

* Proposed age estimation network showed better results with parameter
efficiency.



L imitations and Future works

* TGF Is not tested on the general-purpose dataset like ImageNet
—> Experiments will be done in these tasks.
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