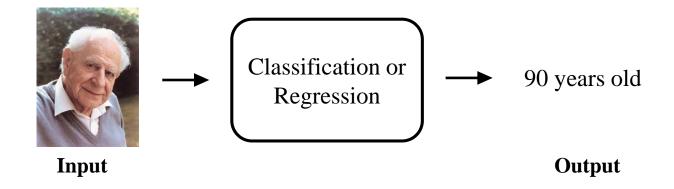
Human Age Estimation Based on Trainable Gabor wavelet

Hyuk Jin Kwon, Jae Woong Soh, Hyung Il Koo, Nam Ik Cho

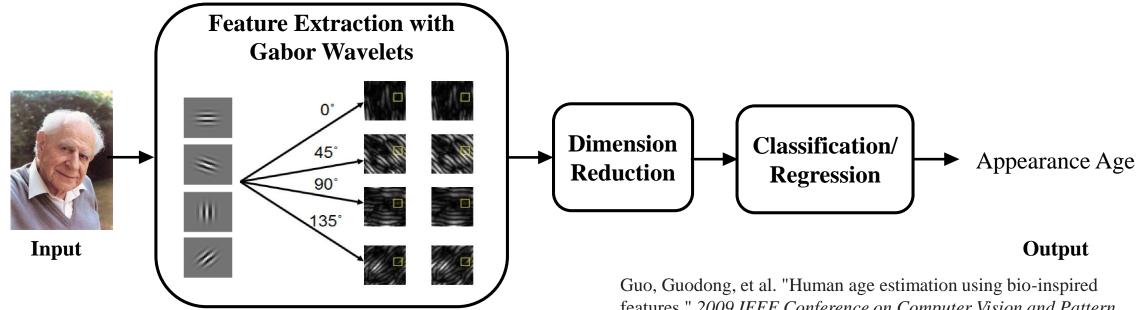
Introduction

What is Human Age Estimation?

- As a Computer Vision Task
 - Determine appearance age of a human from his near frontal photographs

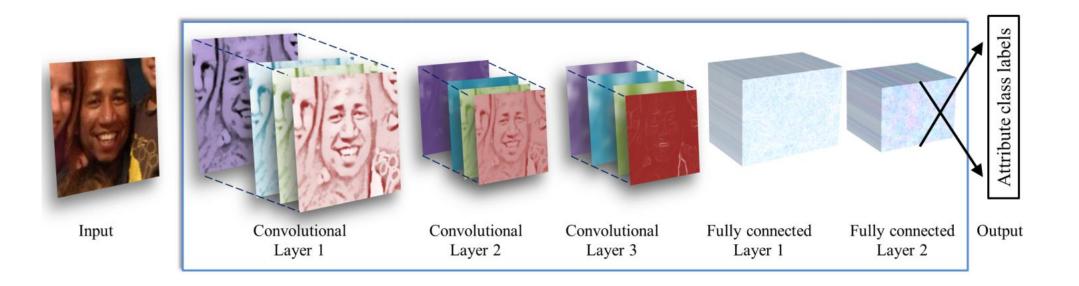


- Feature Point Based Classifiers (Before 2012)
 - Gabor Wavelet Based Methods



features." 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009.

• Convolutional Neural Network (After 2012)



Levi, Gil, and Tal Hassner. "Age and gender classification using convolutional neural networks." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*. 2015.

Feature Based Classifiers Convolutional Neural Network

• Smaller number of parameters• High Performance• Fully trainable

• Low performance

• Larger number of parameters

Cons • Manual tuning of hyperparameters

Feature Based ClassifiersConvolutional Neural Network

Pros	• Smaller number of parameters	High PerformanceFully trainable
Cons	 Low performance Manual tuning of hyper- parameters 	• Larger number of parameters

Feature Based ClassifiersConvolutional Neural Network

Pro	High PerformanceFully trainable

- Low performance
- **Cons** Manual tuning of hyperparameters

• Larger number of parameters

What We Want

Feature Based Classifiers Convolutional Neural Network

ProsSmaller number of parametersHigh PerformanceFully trainable

Low performance

Cons • Manual tuning of hyperparameters • Larger number of parameters

Our Approach

Why we used Gabor wavelets?

• Requires Small Number of Parameters:

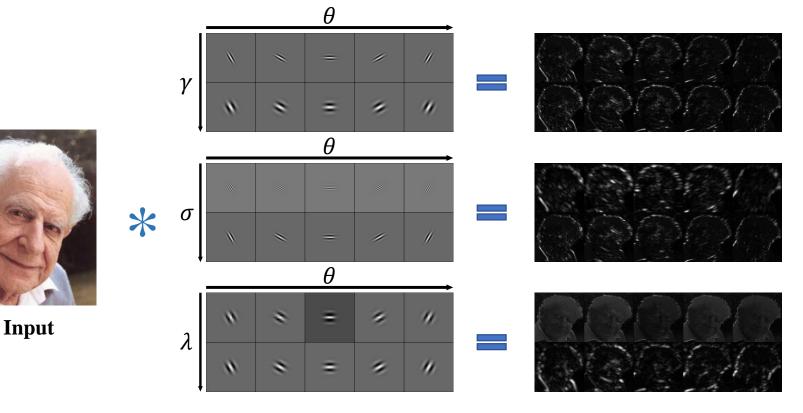
2D Gabor wavelets can be obtained with only 4 parameters $(\gamma, \sigma, \lambda, \theta)$ and sampling grid.

$$G(x,y) = \exp\left(-\frac{X^2 + \gamma^2 Y^2}{2\sigma^2}\right) \times \cos\left(\frac{2\pi}{\lambda}X\right)$$

 $X = x \cos \theta + y \sin \theta, Y = -x \sin \theta + y \cos \theta +$ **Sampling Grid**

Why we used Gabor wavelets?

• Feature Extractor that Effective in Textural information:



Gabor Wavelets

Gabor Responses

Why we used Gabor wavelets?

• Feature Extractor that Effective in Textural information:

θ γ -= 0 11 θ * σ θ 0 Input λ

Gabor Wavelets

Gabor Responses

What We Want

Feature Based ClassifiersConvolutional Neural Network

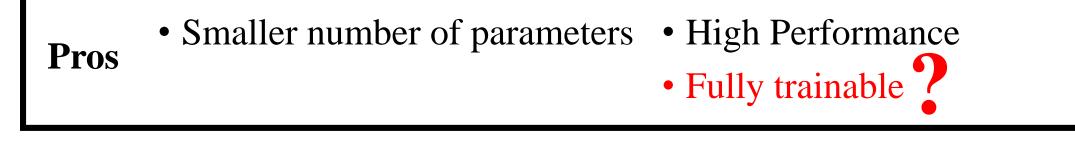
ProsSmaller number of parametersHigh PerformanceFully trainable

Cons
- Low performance
- Larger - Larg

Larger number of parameters

What We Want

Feature Based Classifiers Convolutional Neural Network



Cons
How performance
Manual tuning of parameters

• Larger number of parameters

Challenges

How can we incorporate Gabor wavelets into CNN in the fully trainable manner?

Estimation of Parameters of Gabor wavelets

- We can manipulate the characteristic of discrete 2D Gabor wavelet by its parameters (γ , σ , λ , θ) and the size of sampling grid
- It means that we can train Gabor wavelets by estimating its parameters and the sampling grid size.

$$G(x,y) = \exp\left(-\frac{X^2 + \gamma^2 Y^2}{2\sigma^2}\right) \times \cos\left(\frac{2\pi}{\lambda}X\right)$$

Equation of 2D Gabor wavelets

Modeling of Sampling Grid with $\boldsymbol{\zeta}$

- Intrinsic parameter $\gamma,\,\sigma,\,\lambda\,$ has mathematical relationship to Gabor wavelet
- We need to digitize the Gabor wavelet for actual implementation
- However, the sampling grid size has no connection with the equation of Gabor wavelet
- So we introduce a new parameter ζ to make a connection between sampling grid size and Gabor wavelet

Modeling of Sampling Grid with ζ

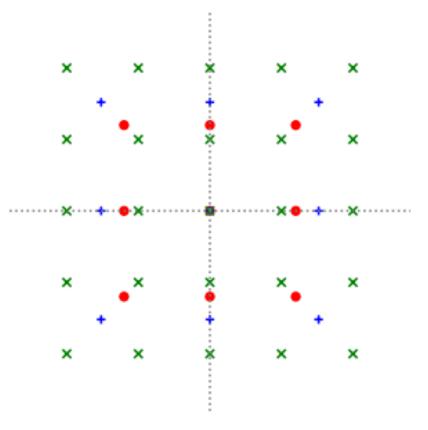
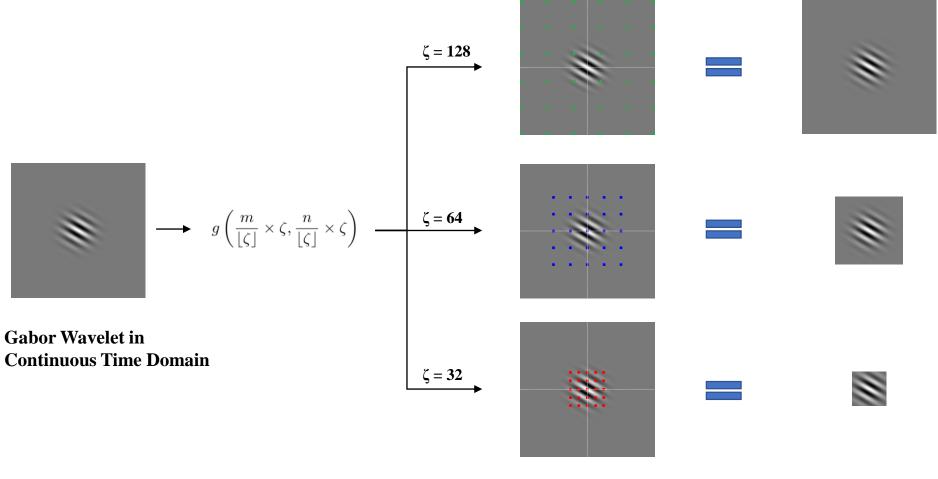


Fig. 2. Sampling grids for three
$$\zeta$$
 values. Red, blue and green dots are generated by (2) with $\zeta = 1.5$, 1.9 and 2.5 respectively.

$$G[m, n] = g(u, v) = \left(\frac{m}{\lfloor \zeta \rfloor} \times \zeta, \frac{n}{\lfloor \zeta \rfloor} \times \zeta\right)$$

m and n are in $-\lfloor \zeta \rfloor, -\lfloor \zeta \rfloor + 1, \cdots, \lfloor \zeta \rfloor$

Modeling of Sampling Grid with $\boldsymbol{\zeta}$



Sampling of Gabor wavelet according to ζ

Gabor Wavelet in Discrete Time Domain

Estimation of Parameters of Gabor wavelets

- CNN with 3x3 convolution was used for estimating parameters $\gamma,\,\sigma,\,\lambda,$ and ζ because
 - 1. CNN with 3x3 convolution is the smallest one among practical CNN
 - 2. It is fully trainable

Estimation of Parameter $\boldsymbol{\theta}$

Not

- The one last parameter to be determined is the orientation of the Gabor wavelet, $\boldsymbol{\theta}$

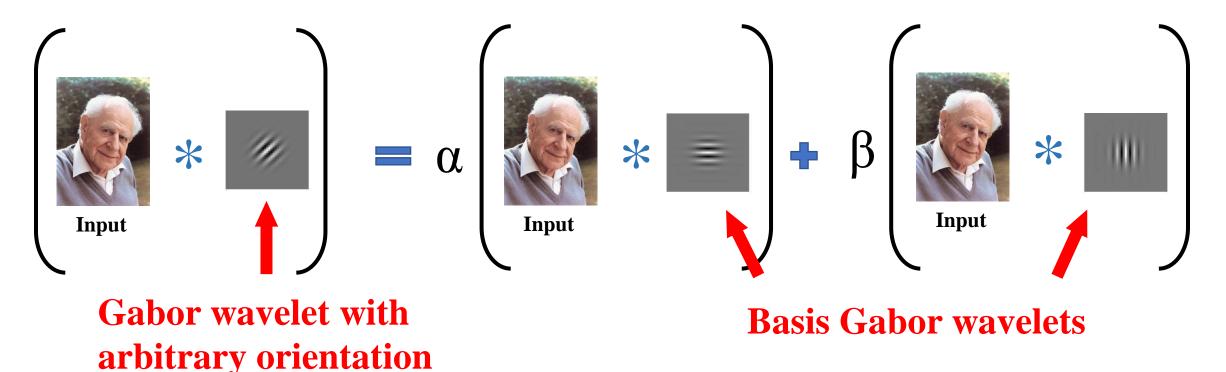
Estimated by CNN

$$G(x, y) = \exp\left(-\frac{X^2 + \gamma Y^2}{2\sigma}\right) \times \cos\left(\frac{2\pi}{\lambda}X\right)$$

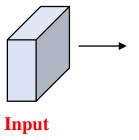
$$X = x\cos\theta + y\sin\theta, Y = -x\sin\theta + y\cos\theta + \text{Sampling Grid}$$
yet estimated

Estimation of Parameter $\boldsymbol{\theta}$

• We address this problem by using a **steering property** that **convolution with Gabor wavelet of any orientation can be represented with a linear combination of a finite set of responses**



Filtering Part of TGW

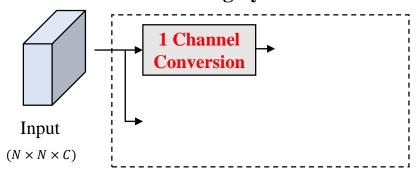


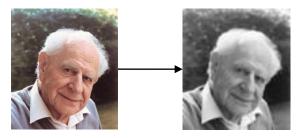
 $(N \times N \times C)$

Input Image

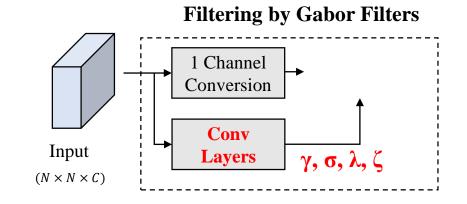
Filtering by Gabor Filters

Filtering Part of TGW

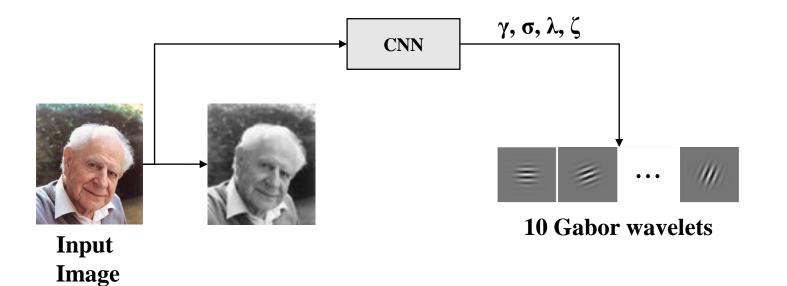


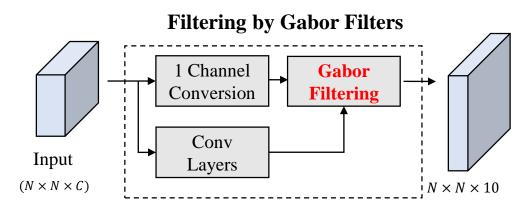


Input Image



Filtering Part of TGW





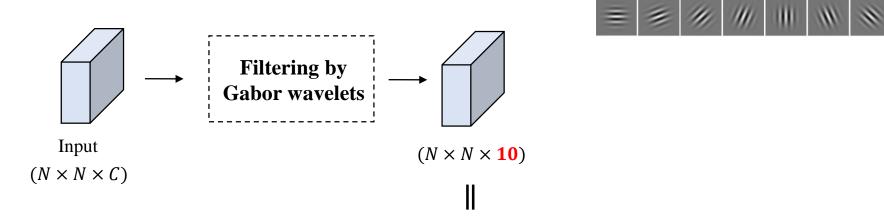
$\mathbf{Input}_{\mathbf{Image}} \mathbf{Input}_{\mathbf{Image}} \mathbf{In$

Filtering Part of TGW

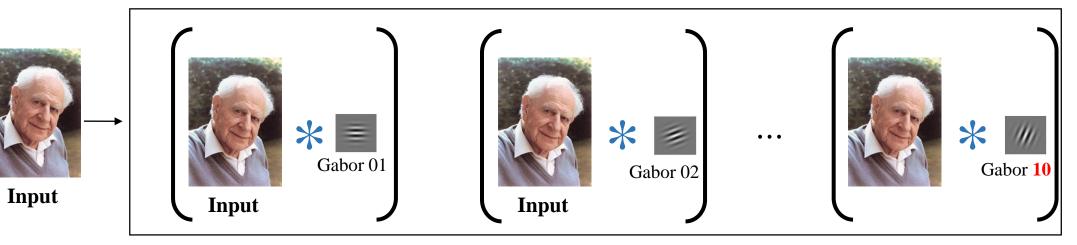
Filtering by Gabor wavelets

Steering Part of TGW

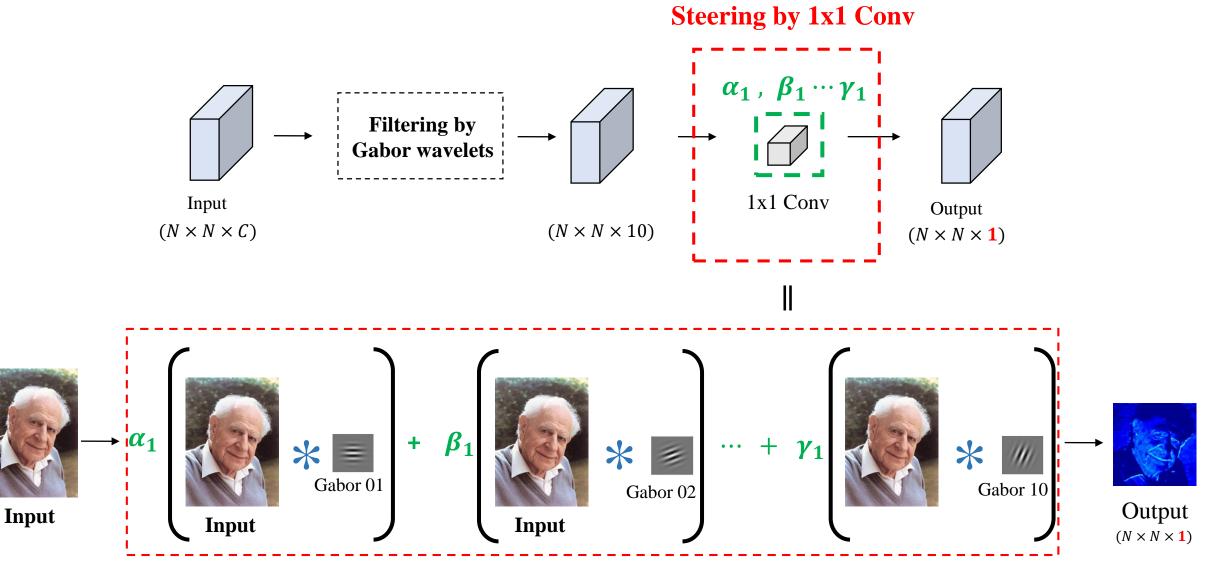
10 Gabor wavelets are used as basis (θ in [9°, 27°, 45°, 63°, 81°, 99°, 117°, 135°, 153°, and 171°])



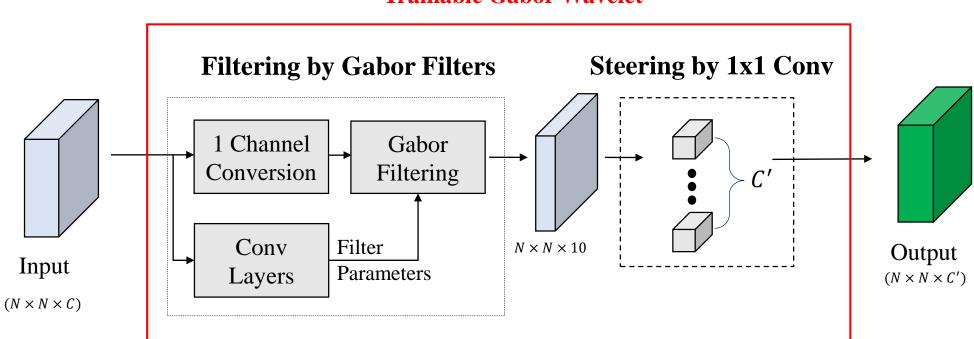
Result of Filtering by Gabor wavelets



Steering Part of TGW

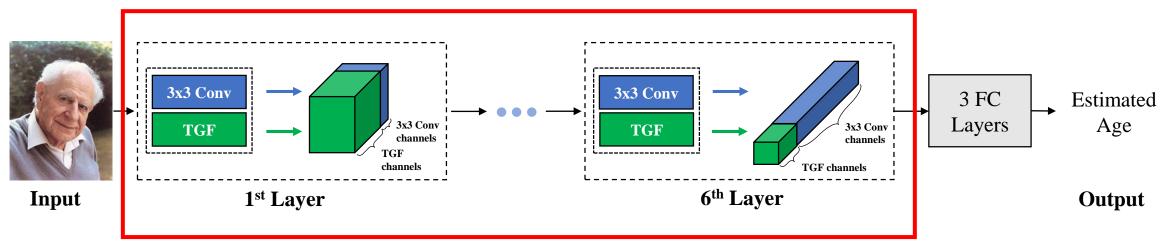


Trainable Gabor Wavelet (TGW)



Trainable Gabor Wavelet

Proposed Human Age Estimation Network

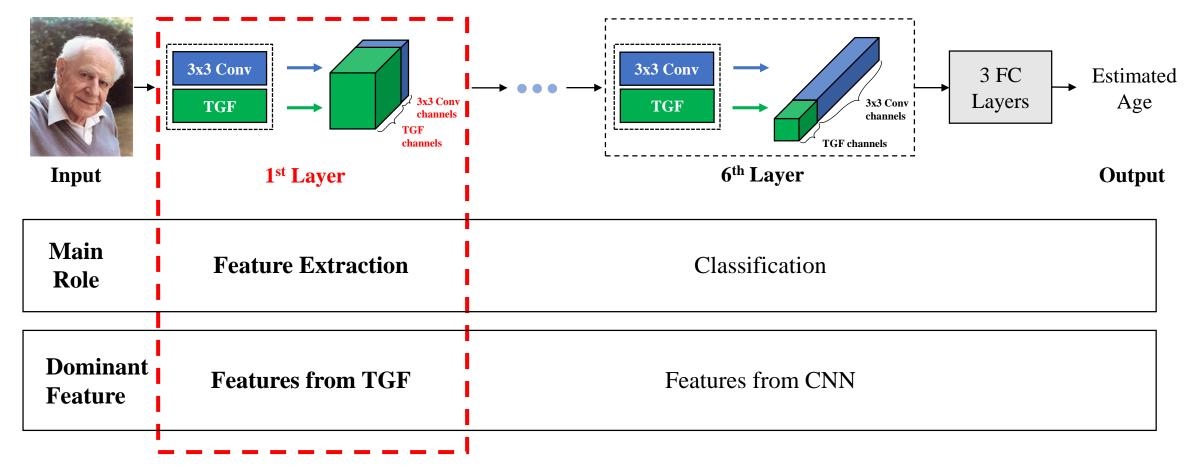


Proposed Human Age Estimation Network

TGF = Trainable Gabor Wavelet Conv = Convolution FC = Fully Connected

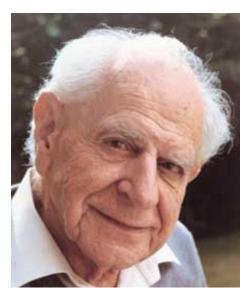
Assign Different Role to Each Layer

Gabor wavelets act as feature extractor

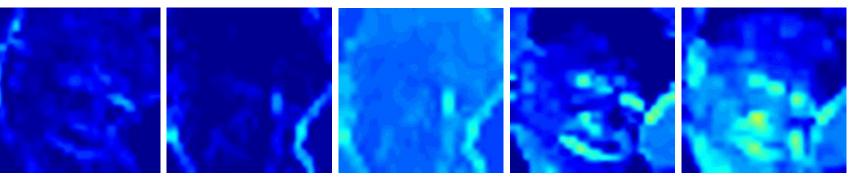


TGF channels > Conv channels

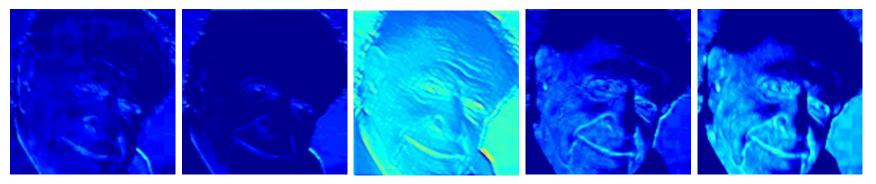
Features from TGW



Input

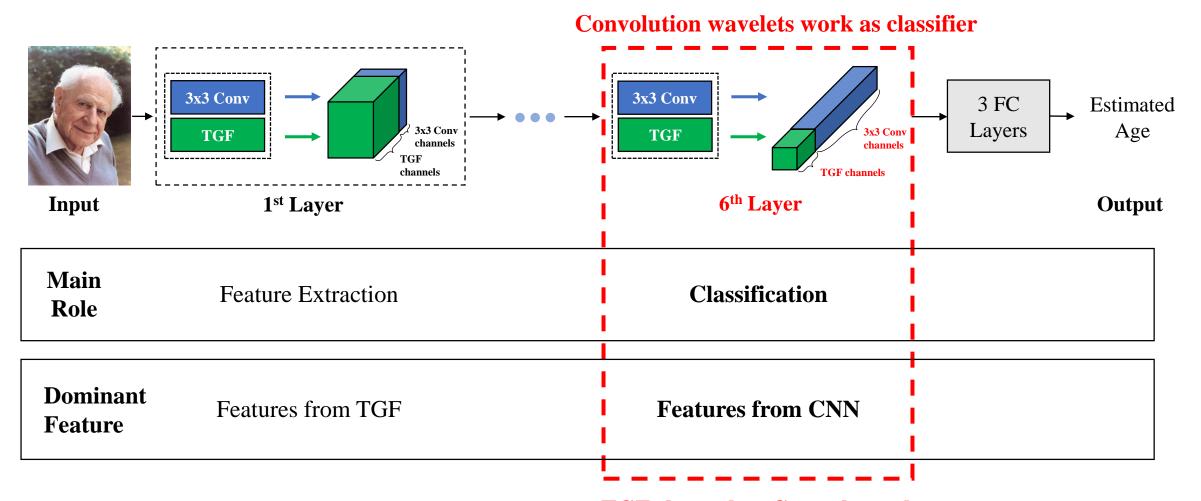


Selected feature map 1st convolution layer of [4]



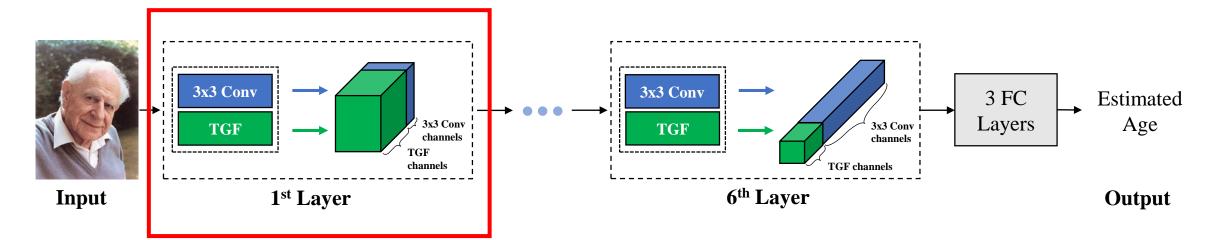
Selected feature map 1st TGW layer of proposed network

Assign Different Role to Each Layer



TGF channels < Conv channels

To sum up



Feature extraction with Trainable Gabor wavelets

To sum up



Similar to ordinary CNN

Evaluation

Evaluation Dataset

- Adience Dataset
 - Total 26,580 facial images of 2,284 identities whose ages are labeled in 8 classes
 - Collected from Flicker
 - Performance measure: Classification accuracy (%)

Ablation Study

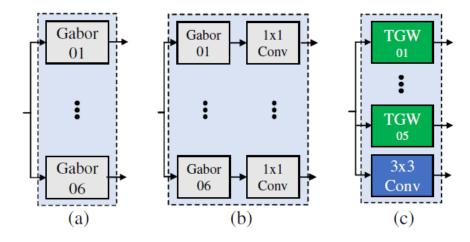


Fig. 4. The first layer in the baseline is replaced with the following structures: (a) the structure for 'M1' and 'M3', (b) the structure for 'M2', and (c) the structure for 'M4' and 'M5'

- M1: six fixed Gabor wavelets w/o a steering block: λ = γ = σ = 1 in (1) and pre-defined 16 orientations are used. In this case, 96 orientations are selected to be equally spaced in [0, π)
- M2: six fixed Gabor wavelets with a steering block:
 λ = γ = σ = 1 in (1) and pre-defined 10 orientations are used.
- M3: six fixed Gabor wavelets w/o a steering block: λ = λ₀, γ = γ₀, σ = σ₀ where (λ₀, γ₀, σ₀) are constants from [5] and pre-defined 16 orientations are used.
- M4: (a) five TGW layers training λ, σ and γ and (b) one 3 × 3 convolution layer, where (λ₀, σ₀, γ₀) are set as in [5].
- M5: (a) 5 TGW layers training ζ and (b) one 3 × 3 convolution layer, where (λ₀, σ₀, γ₀) are set as in [5].

Ablation Study

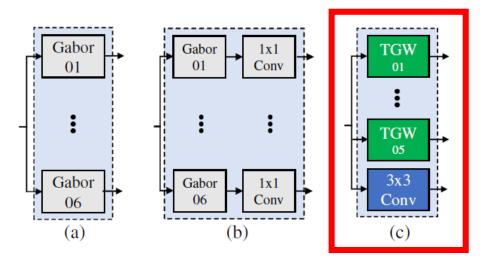
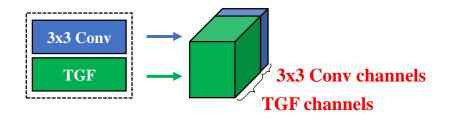


Fig. 4. The first layer in the baseline is replaced with the following structures: (a) the structure for 'M1' and 'M3', (b) the structure for 'M2', and (c) the structure for 'M4' and 'M5'

M5: (a) 5 TGW layers training ζ and (b) one 3 × 3 convolution layer, where (λ₀, σ₀, γ₀) are set as in [5].

	M1	M2	M3	M4	M5
Fixed filters	6	6	6	-	-
TGW layers	-	-	-	5	5
CONV layers	-	-	-	1	1
Steering	-	Ο	-	Ο	Ο
Initialization	with 1s	with 1s	[5]	-	-
Accuracy (%)	47.61	48.87	49.93	49.70	51.00

Settings of The Proposed Method



Layer	TGW channels	3x3 Conv channels
1	180	40
2	155	80
3	130	160
4	105	240
5	80	320
6	55	400

Age Estimation Results

Method	Accuracy (%)	Parameters
LBP [23]	41.1	_
LDP [18]	48.5	-
LDN [18]	51.4	-
Best from [4]	50.7	11M
Extension of [4]	53.4	18M
Resnet-50 [17, 20]	52.2	25M
Cascaded DCNN [19]	52.9	40M
PTP [18]	53.3	-
WC-CNN [24]	54.3	> 62M
Ours (Proposed)	54.4	18M

 Table 3. Age classification result on Adience dataset.

[4]: Levi, Gil, and Tal Hassner. "Age and gender classification using convolutional neural networks." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*. 2015.

Conclusion

Conclusion

- We have proposed the Trainable Gabor Wavelet that can incorporate Gabor wavelets into CNN in trainable manner.
- We also built an age estimation network with the proposed Trainable Gabor Wavelet.
- Proposed age estimation network showed better results with parameter efficiency.

Limitations and Future works

- TGF is not tested on the general-purpose dataset like ImageNet
 - \rightarrow Experiments will be done in these tasks.

Q & **A**

Thank You