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Learning trusts in social networks

> Nowadays, online social networks (OSNs) are dominating the way that
human beings communicate => TONs of data for computational studies.
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This work —

» Learn trusts in social networks from opinions expressed by individuals.

» Devise an online algorithm that learns the trusts from streaming data.
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Opinion Dynamics & Notations

» A social network — S = (V,E,W), V=[n={1,...,n}, ECV x V.

v

Let x;(t;s) be the ith agent's opinion! at time t and topic s.

v

Let x(t;s) = [x1(t;s); x2(t;5); ... ; xn(t; 5)], we have [DeG74]:
DeGroot model : x(t;s) = W(t; s)x(t — 1;s) (1)

where W(t;s) is stationary, E[W(t; s)] = W and stochastic, W(t;s)1 = 1.

v

Intuition — agent weights the opinions of his/her neighbors and update to

a weighted average. (similar to average consensus
g

Other models — e.g., H.-K. model [HKO02], voter's model [HL75].

v

Our goal: to learn the trust matrix W = E[W/(t; s)].

LExample: it can be a p.d.f. for attitude (buying Apple vs buying Samsung).
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Previous work — “Passive” Method

» [Tim07, WLGY11, DBB™"14] take the intuition from (1) and solves:

to+T
min > lx(tis) = Wx(t—L;s)[5 st. W1=1, W>0. (PO
t=to+1
> Difficult to realize as it takes x(tp; s), x(to + 1;s), x(to +2;5), ...
1. Observability — ‘opinion updates’ are random and happen in human brains.
We cannot accurately track the ‘discrete-time’ update of opinions.
2. Stationarity — At to > 0, we may have x(to; s) ~ x(to + 1; s).

Social agents interact w/ others The agents reach consensus
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Proposed “Active” method

» Stubborn agents — agents whose opinions do not change.

> Let the first ny agents be stubborn agents, we have:

I, 0
W(t:s) = s , 2
(t:2) < B(t;s) D(ts) > @)
> Let z(t;s), y(t;s) be the stubborn agents' and normal agents’ opinions.
E[y(co;s)] = (I — D)"*Bz(0;s) = (I — D) 'Bz(c0; s). (3)

> Our idea is to reveal the network structure using (3) —

Stubborn agents i Z

Network structure is kept in the steady state!
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Active sensing — Suppose that we can estimate the opinion accurately.
» Excitation — Stubborn agents’ initial opinion —

Z = [2(0;1) z(0;2) ... z(0; K)]

» Output — Non-stubborn agents' steady state opinion —

Y = E[[y(c0;1) y(00;2) ... y(oo; K)]].

Topics
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Estimating the opinions online

Issue: We do not have access to E[y(co; 5)], z(0; s) in general.

» At time t and topic s, we observe:

x(t;s) = x(t;s) + n(t; s), (4)

where n(t; s) is i.i.d. noise and y(t;s), 2(t; s) are defined similarly.

» For topic s, we have the opinion data {X(t;s)}:c7, ., where Ty s C N is the
sampling set up to the kth iteration.

> Estimate E[y(oc; s)], z(0; s) by temporal averaging:
k &
z; = 2(t;s) =~ z(0;s t;s) = E[z(o0; s
Lo O:8), vt 2 2 3 gleis) ~ Ele(ocis)]

teTk,s t€Tk,s

» Can be done in an online fashion.
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S 9(ts) ~ Elz(o0; ).
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Proposition 1 [WSL16]

Let to = minge7; , t, to — 00, and | T s| — 00 as k — oo, then (y&, zX) —
(E[y(o0; s)],2(0; s)) in the mean square sense.

»  — the estimates zX, yX converge.
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Regression problem

> Let Zx(B, D) be an indicator function for the feasible (B, D), v, A > 0

f(B,D) = Y.L, |y¥ — Dyl — Bz|3 4+ D1+ B1 - 1|3,

Y=(1-D)~'BZ B1+D1=1
h(B, D) = \||vec(D)||1 +Z+(B, D).
N———

D is sparse

To identify (B, D), we solve

» = (P1l.) can identify the true B, D; see [WSL16].
> Solving (P1k) at k — c0? X need a huge amount of data. For each k? X
high complexity.
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Online algorithm for (P1)

» Stochastic proximal gradient (SPG) — at iteration k,
(B<1, DkHL) = proxa,,((BkH — agB*, D**! ang)), (5)
where a > 0 is a step size and
gB* = Vgf (B D¥), gD*=vVpf(B* D"

Notice that the proximal operator can be carried out by a soft-thresholding
operation = v low computational complexity.

> v as fi(,-) is known at iteration k, (5) can be implemented online!

> The gradients are inexact => does it converge?
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» Re-expressing the gradient estimates:

gBk Ivaoo(Bk’Dk)-i'nga ng :VDfoo(Bk,Dk)-i-T[E

Theorem 1 [AFM14]

Let n* = (nk,nk). If limsup,_, . [|n|| < co and limx_,. n* = 0 almost surely
(a.s.), then limy_ oo (B*, D) = (B*, D*) a.s., where (B*, D*) is an optimal
solution to (Pls).

Proposition 2 [this paper]

The online estimators zX, yX converge to their respective expected values
z(0;s), E[y(oo; s)] almost surely if k — oco.

The SPG method for (P1x) converges almost surely.
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Evolution of NMSE in estimating D

The NMSE of Active Method
is ~100 times better than
Passive Method

NMSE

102} Opinion estimation
error is decaying

as O(1/[T)
T

——NMSE in D (active)
—-=-Error in xhat*

kY
~ = NMSE in DX (passive)

AV

10°
10°

Iteration number

Active Online Learning of Trusts in Social Networks

Dimension — n — ns = 100 normal agents,
ns = 36 stubborn agents, K = 72 topics.

Benchmark — “passive” method: solve (P0)
using the same set of data available.

Graph G — ER with p =0.05 and
uniform dist. weights on W.

SPG parameter —
7=0.1,A=10""«a =0.01.

Batch processing — an SPG iteration is run
when 5K new opinion samples are collected.

Sampling set — t € Trs, t ~ {10°,...,10"},
[Tx.s| = 5 x 10°.

We defined NMSE = ||D* — D||2/||D||%.
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Evolution of the error distribution in D
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Fig. Histogram of the squared error in D, i.e., (Df — D;)*. (Left) after 5 x 10* SPG
iterations. (Right) after 50 x 10° iterations.

» The error distribution becomes concentrated at zero as more opinion data

are being collected.
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Conclusions

Social System

» Derived an active online learning algorithm for trusts in social networks.

» Demonstrated both empirically and analytically that the online algorithm

converges.

» Future works: combining the online algorithm with public data collected
from online social networks, faster convergence rate using Nesterov

accelerated gradient methods.
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Questions?

Check out http://arxiv.org/abs/1601.05834 for [WSL16].
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Proposed algorithm for active online learning of social network

!\_7'—'

»

© N o

. Initialize: (B°,D%) € F, k =1,

while convergence is not reached do
Observe new opinion samples {y(t;s), 2(t; 5)}te7; .\ 7;_,, and update the
estimators yX, 2k accordingly.
Compute the gradient gD*, gB* using y¥, 2X.
Perform the proximal gradient updates:

(B<*+1 Dk+1) proxah((Bk‘*'1 — agB¥, D¥*! — ang))

k<« k+1.

end while

. Return: (B*, D¥).
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