

Image Pre-Transformation for Recognition-Aware Image Compression Satoshi Suzuki, Motohiro Takagi, Kazuya Hayase, Takayuki Onishi, Atsushi Shimizu NTT Media Intelligence Laboratories, NTT Corporation, JAPAN

Introduction

Images with high compression ratios degrade deep neural network (DNN) recognition accuracy

- extract high frequency features of images (e.g. Gabor like edge)
- often brings coding artifacts (e.g. block-shaped distortions, mosquito noises)

Our Goal : Prevent the DNN recognition accuracy degradation due to lossy compression

Basic Ideas

Increasing spatial correlation for reduce bitrates while maintaining accuracy using image pre-transformation

- Our method pre-transforms images before lossy compression Related work [Palacio+, CVPR18]
- Their model pre-transform in images that gave them higher accuracy than the original one

Our Method

Loss = $L_{Recog.}(x, y) + \lambda \cdot L_{TV}(Y') * \lambda$: Hyper-parameter Total variation (TV) loss has the effect of increasing the spatial correlation - Because it is not differentiable that directly calculate bitrate, we focus on the **spatial correlation** of images Our model is the ED model with bypass structures - Bypass structures can prevent degradation problem of DNN [He+, CVPR16] and make it possible to utilize local image features

DNNs automatically obtain a feature extraction mechanism and selectively Lossy image compression discards the high frequency information and

- The encoder-decoder (ED) model is learnt with the backpropagated loss of DNNs

Proposed model is learnt with total variation loss and backpropagated loss

	Palacio+	TV-L1 [Le Guen, IPOL14]	Ours	
G	+3.7%	+0.4%	-11.9%	
200	+15.9%	+1.3%	-17.8%	
C	+9.5%	-3.9%	-21.5%	
	BD-Rate(Accur	acy) on each encoder	•	
	Experimental Conditions			
	Task: ImageNet	Task: ImageNet classification problem		
	Network : VGG	Network: VGG-16 [Simonyan & Zisserman, ICLR15]		
S)	QPs selection f	QPs selection for BD-Rate : 4points under 1.0bpp		
•	Hyper-parameter : $\lambda = 1.0$			