

-SUMMARY

- An intra interpolation filter (IF) is applied to intra reference samples.
- Cut-off freq. switchable IFs increase intra prediction performance.
- Conventional switching criteria is based on only block size but it's not always optimal for wide QP^{\times} range. XQP=quantization parameter
- Proposed blocksize-QP dependent IFs improve BD-rate, especially up to double at high-QP range.

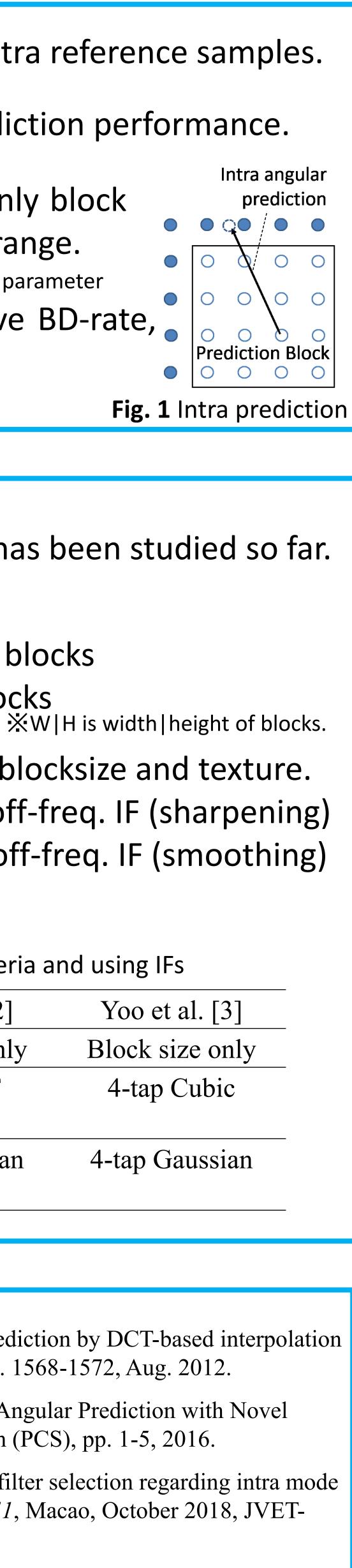
RELATED WORKS^{[1][2][3]}

- Only blocksize-based criteria for switching IF has been studied so far.
- Threshold of the criteria is fixed designed;
- Higher-cutoff-freq. IF \rightarrow Smaller (W|H<=8) blocks
- Lower-cutoff-freq. IF \rightarrow Larger (W|H>8) blocks
- The design assumes the correlation between blocksize and texture.
- Smaller blocks: Complicated \rightarrow Higher-cutoff-freq. IF (sharpening)
- Larger blocks : Simple or flat \rightarrow Lower-cutoff-freq. IF (smoothing)

		_	
	Matsuo et al. [1]	Wei et al. [2]	J
Switching criteria	Block size only	Block size only	B
Smaller blocks (W HM<=8)	4-tap DCT	4-tap DCT	
Larger blocks (W H>8)	2-tap Bilinear	4-tap Gaussian	4-

Table. 1. Comparison table in terms of switching criteria and using IFs

REFERENCE


[1] S. Matsuo, S. Takamura and H. Jozawa, "Improved intra angular prediction by DCT-based interpolation filter," in 20th European Signal Processing Conference (EUSIPCO), pp. 1568-1572, Aug. 2012.

[2] R. Wei, R. Xie, L. Song, L, Zhang, and W. Zhang, "Improved Intra Angular Prediction with Novel Interpolation Filter and Boundary Filter," in Picture Coding Symposium (PCS), pp. 1-5, 2016.

[3] S. Yoo, J. Heo, J. Choi, L. Li and J. Lim, "CE3-3.1.1: Interpolation filter selection regarding intra mode and block size," in ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Macao, October 2018, JVET-L0130.

BLOCKSIZE-QP DEPENDENT INTRA INTERPOLATION FILTERS

Yoshitaka Kidani, Kei Kawamura, Kyohei Unno and Sei Naito KDDI Research, Inc. 2-1-15 Ohara, Fujimino, Saitama, 356-8502 Japan

PROPOSED METHOD PRELIMINARY EXPERIMENTS

Static criteria is not optimal since Cubic/Gaussian filters are also applied larger/smaller blocks.

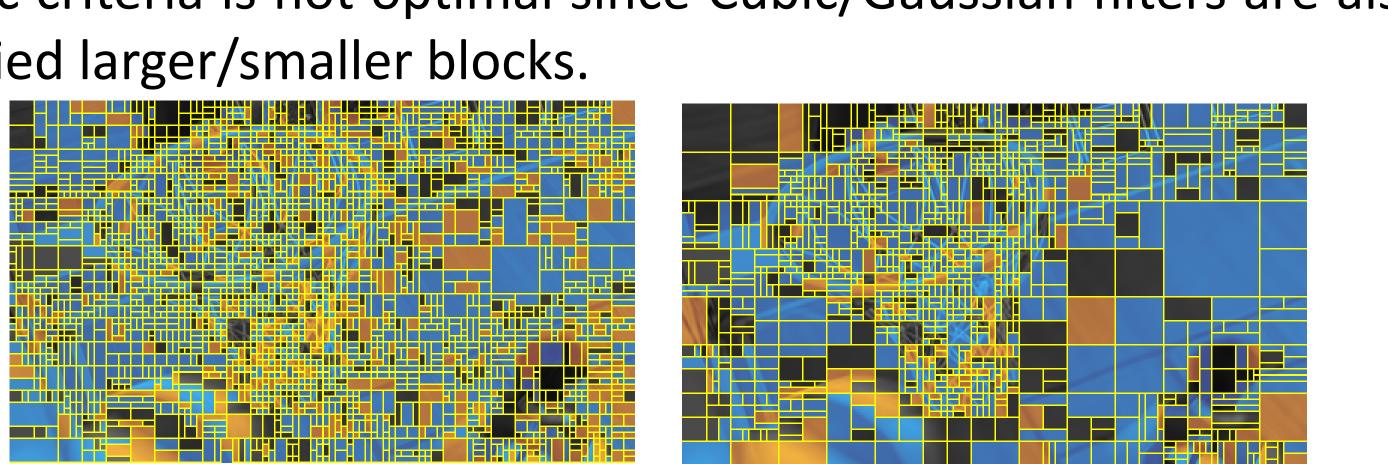
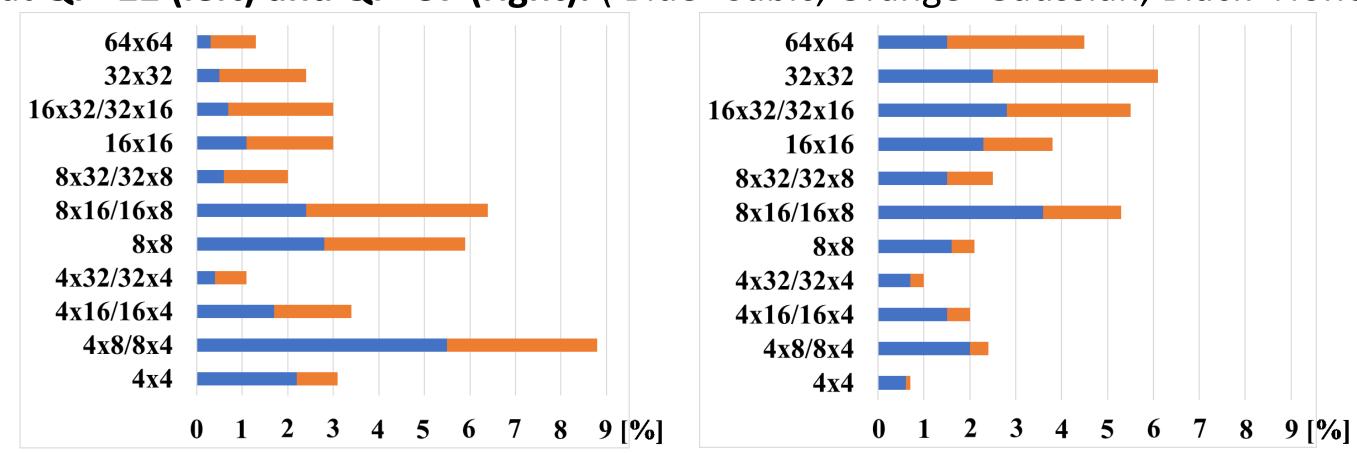



Fig. 2 Optimal IFs selection results considering bit-rate and reconstructed image error at **QP=22 (left) and QP=37 (right).** (Blue=Cubic, Orange=Gaussian, Black=None)

Fig. 3 Area ratio of C/G (blue/orange) filtered blocks normalized frame where all sequences and all frames are averaged at QP=22 (left) and QP=37 (right).

PROPOSAL

Re-design QP-dependent thres considering QP affects block partitic

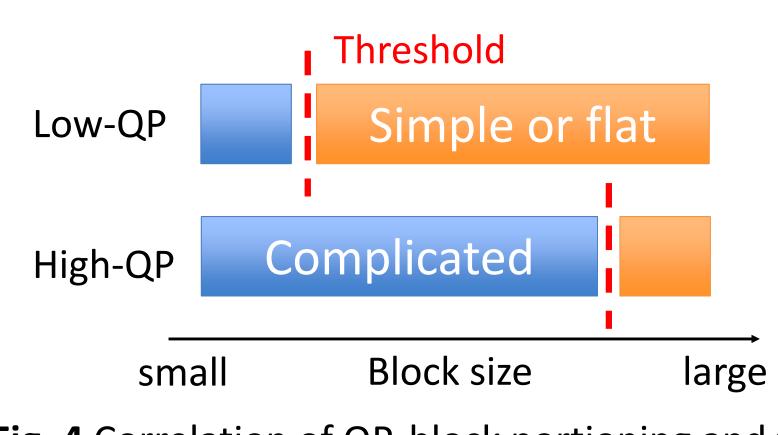


Fig. 4 Correlation of QP, block portioning and t

Table. 3. Comparison table in terms of switching criteria and using IFs

	-		_
	Proposal	Yoo et al.	VTM-2.0
Switching criteria	Block size / QP	Block size only	
Interpolation filter	4-tap Cubic 4-tap Gaussian	4-tap Cubic 4-tap Gaussian	2tap-Bilinear

sholds	Table. 2. Proposed threshold ofcriteria for IFs.					
oning	Block size \rightarrow $\downarrow QP$	4	8	16	32	64
	18	С	G	G	G	G
	19	С	С	G	G	G
	• • •	С	С	G	G	G
	27	С	С	G	G	G
	28	С	С	С	G	G
)	• • •	С	С	С	G	G
, 	35	С	С	С	G	G
texture	36	С	С	С	С	G

EXPERIMENTAL RESULTS

EXPERIMENTAL CONDITION

RATA-DISTORTION CURVE CHARACTERISTIC

improvement.

BD-RATE AND RUNNING TIME

The proposal improves coding performance up to double at **high-QP range** against Yoo et al. .

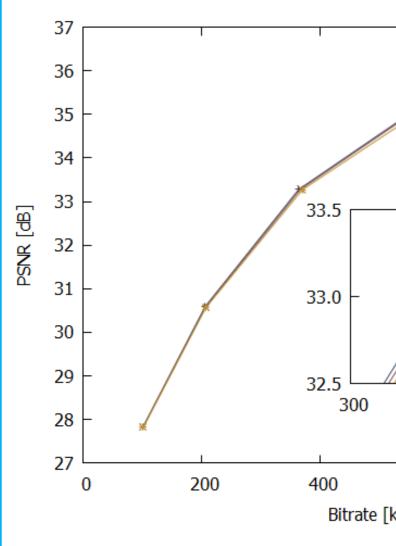
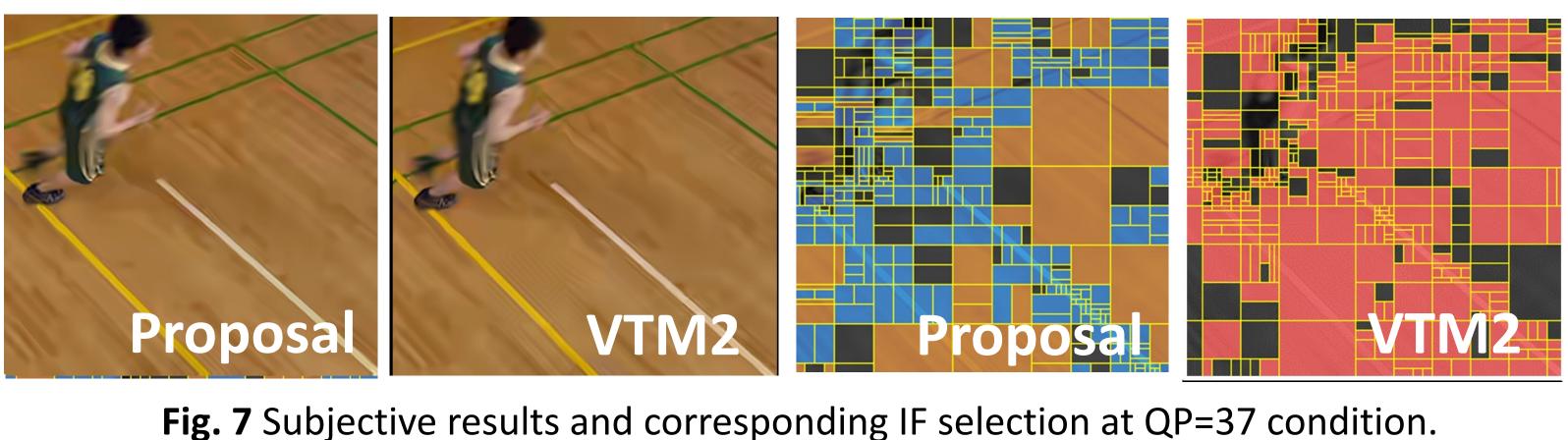



Fig. 5 RD curve of proposal at AI main 10 condition in high-QP range.

SUBJECTIVE EVALUATION

Compared to anchor image, the subjective quality is not sacrificed by the proposal.

Implement proposal on the top of VTM2 (VVC reference S/W). Follow the JVET common test condition (All intra).

Evaluate two QP ranges;

1) Normal-QP= {22, 27, 32, 37}, 2) high-QP = {32, 37, 42, 47}

The proposal provides bitrate reduction rather than the PSNR

		Proposal	Yoo et al.	Proposal	Yoo et al.
→ Proposal ★ Conventional –		Normal-QP	Normal-QP	High-QP	High-QP
-*- VTM2.0	Class A1	-0.06%	-0.18%	-0.08%	-0.18%
_	Class A2	-0.17%	-0.15%	-0.10%	-0.03%
	Class B	-0.43%	-0.41%	-0.52%	-0.20%
	Class C	-0.76%	-0.65%	-0.72%	-0.37%
	Class E	-0.73%	-0.59%	-0.57%	-0.20%
_	Overall	-0.45%	-0.41%	-0.43%	-0.20%
	Class D	-0.55%	-0.53%	-0.50%	-0.40%
350 400 _	EncT	101%	102%	101%	103%
600 800 1000	DecT	101%	101%	101%	101%
14 1					

Table. 6 BD-rate comparison of two methods
 (proposal vs. Yoo et al.) and two condition (CTC-QP vs. High-QP). Both anchor is VTM-2.0. Note that EncT/DecT are averaged.

(Blue=Cubic, Orange=Gaussian, Red=Bilinear, Black=None)