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LMMSE estimation

Consider a system with signal (input) x and measurement y

Linear minimum mean-squared error (LMMSE) estimator

x̂ = C†yxC
−1
yy y

minimizes

MSEx , Ex[||x− x̂||2]

In practice, sample covariance matrices (SCMs) computed

from length-T training data:

Ĉyy =
1

T
YY†, Ĉyx =

1

T
YX†

With low sample support, LMMSE estimator may perform

poorly due to model mismatch
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LMMSE estimation with diagonal loading

Robustness can be improved by diagonal loading (DL) with

diagonal loading factor (DLF) γ ≥ 0:

x̂ = Ĉ†yx

(
Ĉyy + γI

)−1
y

A.k.a. Tikhonov regularization or ridge regression

Improves condition number of the matrix to be inverted

Achieves a better bias-variance trade-off ⇒ lower MSE
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How do we choose the DLF?

 
 

A crucial problem: choosing the DLF    

9 The DLF H significantly affects 
performance  

9 Often criticised for “ad hoc” 
choice of the parameter, e.g. 

 

9 Methods automatically tuning the 
DLF are desired 

 

 

5 

LMMSE 
based on 
SCM 

LMMSE 
with DL 

M
ean squared error (dB)  

DLF γ significantly affects performance

Typical ad-hoc choice:

γ = 10λmin

Need methods to automatically tune the

DLF
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Objective of this work

Given the estimated covariance matrices, automatically choose

the optimal γ for

x̂γ = Ĉ†yx

(
Ĉyy + γI

)−1
y

such that the MSE of estimating x is minimized:

γ∗ = arg min
γ

Ex[||x− x̂γ ||2]

A more general problem: Optimize the shrinkage factors

(α, γ) for the estimate

x̂α,γ = Ĉ†yx

(
αĈyy + γI

)−1
y

which reduces to DL for α = 1
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Related work

Techniques based on random matrix theory (RMT) and large

system assumption

1 Optimize estimation of the covariance matrix

Examples: Ledoit and Wolf (J. Multivariate Analysis 2004),

Stoica et al. (TSP 2008), Chen et al. (TSP 2010)

Achieves near-optimal covariance matrix estimation

But generally suboptimal for signal estimation

2 Maximize SINR

Examples: Mestre and Lagunas (TSP 2006), Zhang et al.

(TSP 2013)

Generally suboptimal for minimizing MSE

3 Minimize MSE

Examples: Wen et al. (SPL 2013), Zhang et al. (TSP 2013)

based on SCM

do not account for differently distributed training and

application data
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This work

We propose choosing the DLF based on cross-validation

(CV)

We derive computationally efficient calculation schemes

Not based on random matrix theory

Explicitly target the minimization of the MSE for signal

estimation

Allow different distributions for training and application

data
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Leave-one-out cross validation (LOOCV)

Choosing γ is a model selection problem

Assume first that the training and application data are

identically distributed

Reserve some of the training data for model validation under

the signal estimation criterion:

 
 

Leave-one-out cross validation (LOOCV) 

• Choosing H as a model selection problem  

• When training and application data are identically distributed, we 
can spare some training data to validate model, under the signal 
estimation criterion  
 
 

• LOOCV splits repeatedly, with one symbol for validation each time   

10 

Training data Application data Validation 
data 

Split 1: 

Split 2: 

Split T: 

Training data 

Training data 

Training data 

Application data 

Application data 

Application data 

time 

LOOCV splits repeatedly, reserving one symbol for

validation each time:

 
 

Leave-one-out cross validation (LOOCV) 

• Choosing H as a model selection problem  

• When training and application data are identically distributed, we 
can spare some training data to validate model, under the signal 
estimation criterion  
 
 

• LOOCV splits repeatedly, with one symbol for validation each time   

10 

Training data Application data Validation 
data 

Split 1: 

Split 2: 

Split T: 

Training data 

Training data 

Training data 

Application data 

Application data 

Application data 

time 
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Direct implementation of LOOCV is expensive

Using SCMs and T samples, LOOCV chooses

γ∗ = arg min
γ

1

T

T∑
i=1

||xi −W†
∼i ,γyi ||2

with W∼i ,γ =
(

Y∼iY
†
∼i + γI

)−1
Y∼iX

†
∼i

If we test K candidates for γ, this requires KT matrix

inversions

For N-dimensional y, the resulting complexity O(KTN3)
can be prohibitive
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Computationally efficient implementation

For SCMs, we apply the Woodbury matrix identity to

simplify the problem to

γ∗ = arg min
γ

∥∥X− X
(
Bγ −DBγ

)
(I−DBγ )

−1∥∥2
where

Bγ , Y†
(
YY† + γI

)−1
Y

and DBγ is a diagonal matrix with diagonal entries of Bγ

This is a univariate optimization problem, which can be

solved using standard tools

Computing the SVD of Y can further accelerate the

evaluation of the cost function for different candidates γ
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Different distributions of training and application data

Training and application data may have different

distributions (e.g., orthogonal training)

In this case, we exploit spatial correlation between entries

of y

E.g., in the MIMO channel model y = Hx + z, this correlation

is introduced by H

Assumption: Estimates of covariance matrices (Ĉyx, Ĉyy)
available

Perform spatial LOOCV on the application data. That is,

choose γ to minimize the MSE of predicting y
(n)
d from

y
(∼n)
d :

γ∗ = arg min
γ

1

ND

D∑
d=1

N∑
n=1

∣∣∣y (n)d − ŷ (n)d ,γ∣∣∣2
with length-D application data of dimension N
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∣∣∣y (n)d − ŷ (n)d ,γ∣∣∣2
with length-D application data of dimension N

J. Tong, Q. Guo, J. Xi, Y. Yu, P. J. Schreier Diagonal loading for linear signal estimation 11 / 16



LOOCV on application data

Perform spatial LOOCV on the application data:

Split the training

data w.r.t. time

Split the application

data w.r.t. space

As before, computationally efficient implementations are

derived using the Woodbury matrix identity
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Results: MSE vs. SNR with orthogonal training

20× 20 MIMO channel model: y = Hx + z

Training: orthogonal (DFT), T = 24

Application data: Gaussian, D = 24
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Results: MSE vs. T with orthogonal training

Training: orthogonal (DFT), varying T

Application data: Gaussian, D = 24

SNR: 10 dB
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Results: MSE vs. T , training/app data i.d.

Application and training data identically distributed

25 30 35 40 45 50

−9

−8

−7

−6

−5

−4

−3

−2

Length of Training

N
or

m
al

iz
ed

 M
SE

 o
f E

st
im

at
in

g 
x 

(d
B)

 

 
Standard
DL, CV out−of−training
DL, CV training−only
DL, γ = 10λmin
DL, oracleSNR=5 dB

SNR=10 dB

J. Tong, Q. Guo, J. Xi, Y. Yu, P. J. Schreier Diagonal loading for linear signal estimation 15 / 16



Conclusions

LOOCV can be efficiently used to choose the DLF

minimizing MSE

Can handle both identically distributed and differently

distributed training and application data, by splitting w.r.t.

time and space, respectively

These ideas can be generalized to the shrinkage estimator

x̂α,γ = Ĉ†yx

(
αĈyy + γI

)−1
y

See our forthcoming journal paper:

J. Tong, P. J. Schreier, Q. Guo, S. Tong, J. Xi, and Y. Yu,

“Shrinkage of covariance matrices for linear signal estimation using

cross-validation,” to appear in IEEE Trans. Signal Processing
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