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ABSTRACT

Existing SISR (single image super-resolution) methods mostly
assume that a low-resolution (LR) image is bicubicly down-
sampled from its high-resolution (HR) counterpart, which
inevitably give rise to poor performance when the degrada-
tion is out of assumption. To address this issue, we propose
a framework PRED (parallel residual and encoder-decoder
network) with an innovative training strategy to enhance
the robustness to multiple degradations. Consequently, the
network can handle spatially variant degradations, which sig-
nificantly improves the practicability of the proposed method.
Extensive experimental results on real LR images show that
the proposed method can not only produce favorable results
on multiple degradations, but also reconstruct visually plau-
sible HR images.

Index Terms— SISR, multiple degradation, CNN, PRED

1. INTRODUCTION

Single Image Super Resolution (SISR) aims at reconstruct-
ing high-resolution (HR) image from its low-resolution (LR)
counterpart [1–3]. Generally, the relation between LR-HR
images can vary depending on the situation. Many studies as-
sumed that LR image is a bicubicly downsampled version of
HR image, but other degradations such as blur, decimation, or
noise can also exist in practical applications.

As a classic problem, SISR is still an active but challeng-
ing research topic due to its ill-poseness nature and high prac-
tical values [4], and can serve as a built-in module for other
image restoration or recognition tasks. Recently, deep convo-
lutional neural networks (CNNs) have been successfully ap-
plied to SISR [5–7] and significantly improve performance in
terms of peak signal-to-noise ratio (PSNR).

However, these works suffer from a common defect, that
is, they can only deal with one specific situation, such as
bicubic downsampling, but fail to solve multiple degrada-
tions with single model. Because the practical degradations
of SISR is much more complex [8,9], and the performance of
learned CNN models may deteriorate seriously when the as-

sumed degradation deviates from the true one, making them
less effective in practical scenarios.

In this case, this paper aims at answering the following
questions: (i): Can CNN robustly handle multiple degrada-
tions with single model? (ii): Is it possible to use synthetic
data to train a model with high practicability?

In the view of above, the main contributions of this paper
are summarized as follows:

• We propose an effective CNN framework, indicated
as PRED (parallel residual and encoder-decoder net-
work), with an innovative training strategy. The pro-
posed method goes beyond the widely-used bicubic
degradation assumption and works for multiple and
even spatially variant degradations.

• We propose IBF (Integrated Block Fusion) to block-
wise reconstruct the full image instead of convolving
directly on the whole image, which shows prominent
improvements.

• We show that the proposed network learned from syn-
thetic training data can produce competitive results
against the state-of-the-art SISR method on both syn-
thetic and real LR images.

The rest of the paper is organized as follows: Section 2
introduces the proposed method mentioned above. Section 3
and 4 focus on the experiments and evaluation both on syn-
thetic data and real LR images. Section 5 draws the conclu-
sions according to the experimental results.

2. PROPOSED METHOD

The proposed PRED framework has two parallel networks,
denoted as AED (auto encoder-decoder) and ResNet (residual
network), which will be introduced in the following parts.

2.1. AED network

The AED is applied as an image purifier to preserve the pri-
mary components of the contents in the image and meanwhile
eliminate the randomly generated corruptions [10].
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(d) PRED Framework

Fig. 1. Demonstration of the proposed PRED structure and Simi-Loss (d). The AED network consists 3 Down / Up-scale
Modules (a / b), while the ResNet connected in parallel consists 8 Residual Modules (c). The AED takes multiple randomly
degraded LR images as inputs in the training phase and minimizes the Simi-Loss which will be introduced in Section 2.1.

The encoder primarily consists of three Down-scale mod-
ules (Fig. 1 (a)), reducing the spatial scale to one-eighth of
the input. The decoder is mainly composed of three Up-scale
modules (Fig. 1 (b)), and a pixel shuffling layer [11,12] is cas-
caded to obtain the image magnified by S times, where S is
the super-resolution upscaling factor. Considering parameter-
efficient, most layers use the separable convolution [13, 14].
We use SELUs [15] (scaled exponential linear units) as acti-
vation layers to induce self-normalizing properties.

To deal with multiple degradations, the most conventional
way is to train the AED network with LR-HR data pairs gen-
erated from multiple degradations, and directly minimize the
MSE (Mean Square Error) loss to achieve acceptable perfor-
mance in terms of peak signal-to-noise ratio (PSNR). We refer
to this training strategy as the “regular” method.

In order to enhance the robustness of the network, we
introduce an innovative training strategy by controlling the
consistency of AED output to multiple LR images gener-
ated from one HR image with different degradations.

In the training phase, we generate n LR images from one
HR image by applying n different degradations. And we fur-
ther assume that the n LR images share similar SR estimation
from the proposed AED. Accordingly, the Simi-loss can be

formulated as:

Lsimi =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

mse(SRi, SRj) (1)

where mse is the mean square error [4].
In the meanwhile, the Mean-MSE loss is needed for re-

construction quality, which can be formulated as:

Lmmse =
1

n

n∑
i=1

mse(SRi, HR) (2)

in which SRi denotes the ith output image of the AED net-
work and HR denotes the corresponding ground truth HR
image.

The final cost function applied in training phase is the lin-
ear combination of Lsimi and Lmmse:

Lmultin = αLmmse + βLsimi (3)

where α and β are hyperparameters. We refer to this proposed
training strategy as “multin” since it has multiple inputs.



Table 1. Average PSNR results for general degradations on dataset Set5 [16]. We use nearest-neighbor as downsampler with
scale factor 2. The best two results are highlighted in red and blue colors, respectively.

Degradation Methods EDSR PRED-regular PRED-multin-a PRED-multin-b PRED-multin-pro
blur σb noise σn PSNR (dB)

0.5 1 25.28 33.61 33.29 33.74 34.24
0.5 2 21.83 33.42 32.95 33.55 34.00
0.5 3 19.93 32.94 32.52 32.35 33.71
1.5 1 26.04 31.39 31.48 32.37 33.54
1.5 2 22.29 31.54 30.97 31.80 32.73
1.5 3 20.21 30.94 30.14 31.13 32.03

2.2. ResNet in Parallel

Although the proposed AED is robust to multiple degrada-
tions, its robustness is somehow obtained by sacrificing the
reconstruction quality. In order to generate high quality SR
images, we parallelly combined a ResNet [17] with 8 Resid-
ual modules (Fig. 1 (c)) to the AED to compensate the details
of the SR image. The non-linearities applied here are soft-
signs in consideration of the compensation which could be
both in positive and negative value. In the end, we cascade
a subpixel layer and add the outputs of two parallel parts to
obtain the final SR image.

2.3. IBF

According to our literature review, most CNN based SISR
method [7,10,17] directly reconstruct the whole HR image in
the testing phase no matter the network is trained block-wise
or image-wise. In our experiments, we found that block-wise
reconstruction shows prominent improvements compared
with directly reconstructing the whole image. Therefore,
we proposed to use an integrated block fusion (IBF) method
to block-wise reconstruct a full image in the testing phase.
Specifically, we decompose the image into blocks with the
size of 24. The blocks are horizontally and vertically over-
lapped with 12 pixels (st = 12), and the reconstruction of
overlapped area will take the average value from each block.
We refer to this reconstruction method as “PRED-multin-pro”
in this paper.

3. IMPLEMENTATION

3.1. Data

The training data are sub-images in shape of (48 × 48 × 1),
which are extracted from the DIV2K dataset (only Y chan-
nel in YCbCr color space is considered). Sub-images are
degraded randomly with σb and σn (standard deviation of
Gaussian blur kernel and additive Gaussian noise), and then
downsampled directly (using nearest-neighbor downsampler)
with scale factor S. We set the range of σb to (0, 2) with
stride = 0.2 and σn to (0, 5) with stride = 1. There are 66
degradations covered by synthetic training data.

Table 2. Hyperparameters settings of different models. Note
that the PRED-multin-pro will reconstruct full image block-
wise (IBF applied), while other models directly reconstruct
the whole image (IBF not applied) in testing phase.

Models

AED Training
IBF
st

training strategy input
numberregular multin

α β
PRED-regular

√
- - 1 -

PRED-multin-a - 9 1 3 -
PRED-multin-b - 9 10 4 -
PRED-multin-pro - 9 10 4 12

3.2. Training details

We trained four models with different settings as shown in
Table 2. Adam [20] is used as the optimizer with learning rate
η = 0.0001. Considering the gradient dispersion caused by
increasing depth, we use weight-normalization [21] to drive
higher learning rate (i.e., 0.001) while fine-tuning ResNets.

4. EXPERIMENT RESULTS

4.1. Experiment on Synthetic LR Images

In this subsection, we evaluate the performance on synthetic
LR images. We compare the proposed method with EDSR
[7] on different degradations in Table 1. The performance
of EDSR deteriorates seriously when the assumed bicubic
degradation deviates. Meanwhile, the PRED-multin-pro ben-
efiting from the “multin” training strategy and the IBF method
outperforms PRED-regular both inside (Table 1) and outside
(Table 3) the training space, which further proves the scal-
ability of the proposed method on spatially variant degrada-
tions. The visual comparison is given in Fig. 2. One can
see that PRED-regular produce more visually pleasant results
than EDSR. However, they can not recover edges as sharper
as PRED-multin-pro.



Table 3. Average PSNR results on datasets for bicubic / nearest downsampler (scale factor = 2) with σb = 1.5 and σn = 0
applied here. Note that the bicubic degradation is out of the training space here. Best results are highlighted in red color.

PRED-regular PRED-multin-a PRED-multin-b PRED-multin-proDataset Downsampler PSNR (dB)
bicubic 29.15 29.44 29.68 29.73Set5 [16] nearest 33.11 33.41 32.56 33.80
bicubic 27.76 27.69 27.73 27.97Set14 [18] nearest 29.95 30.45 29.73 30.83
bicubic 27.21 27.50 27.31 27.35BSD100 [19] nearest 28.63 29.15 28.68 29.54

(a) Ground Truth (b) LR (zoomed) (c) Bicubic (d) EDSR (e) PRED-regular (f) PRED-multin-pro

Fig. 2. SISR performance comparison on image “Butterfly” from Set5 [16]. The degradation involves Gaussian blur kernel
with σb = 1.2, additive Gaussian noise with σn = 3 and nearest-neighbor downsampler with scale factor 2. Results in terms of
PSNR are (c) Bicubic / 22.05dB, (d) EDSR / 24.526dB, (e) PRED-regular / 26.30dB, (f) PRED-multin-pro / 27.49dB.

(b) LR image (c) EDSR (c) PRED-multin-pro

Fig. 3. SISR results on real image “Chip” with scale factor 2.

4.2. Experiments on Real Images

Besides the above experiments on LR images synthetically
downsampled from HR images with known degradations, we
also do experiments on real LR images to demonstrate the
practicability of the proposed method. Since there are no
ground-truth HR images, we only provide the visual compar-
isons. Fig. 3 and Fig. 4 illustrate the SISR results on two
real LR images Chip and Cat, respectively. The EDSR [7]
is used as one of the representative CNN-based methods for
comparison. It can be observed from the visual results that the
PRED-multin-pro can produce much more visually plausible
HR images than the competing methods.

(b) LR image (c) EDSR (c) PRED-multin-pro

Fig. 4. SISR results on real image “Cat” with scale factor 2.

5. CONCLUSION

In this paper, we propose an effective framework handling
multiple degradations via a single model. PRED network and
Simi-loss are proved to be valid on enhancing the robustness
of the framework. IBF shows significant improvements on
reconstruction quality. The results on synthetic LR images
demonstrate that the proposed method can perform favorably
not only on traditional but also spatially variant degradations.
Moreover, the results on real LR images show that the pro-
posed method can reconstruct visually plausible HR images.
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