# An Affine-Linear Intra Prediction With Complexity Constraints

ICIP 2019, Taipei Michael Schäfer, Björn Stallenberger, Jonathan Pfaff, Philipp Helle, Heiko Schwarz, Detlev Marpe, Thomas Wiegand

Fraunhofer HHI, Video Coding & Analytics Department



### Motivation of research

**Observation.** Given modern computational capabilities, it is possible to obtain new intra prediction modes as outcome of a training experiment; *Pfaff et al. 2018*, *Helle et al. 2019*.

A question to ask. Given the computational burden of the conventional intra prediction modes as upper bound, are these predictors optimal among all?

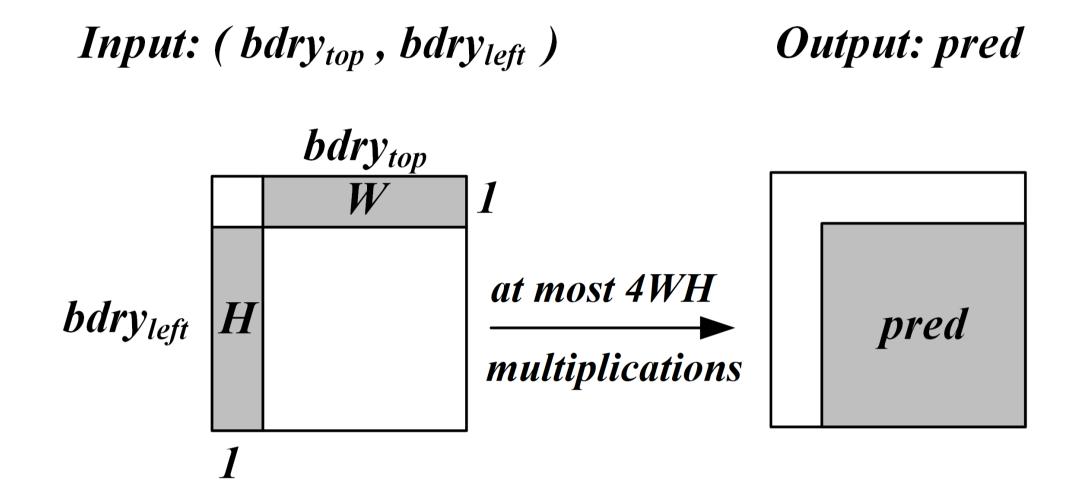


Fig. 1 Generation of an intra prediction signal.

Our goal. Train affine-linear predictors which use one line of reconstructed boundary samples as input and require at most four multiplications per sample to predict.

# Description of the trained predictors

**Overview.** We propose to train N=35 intra prediction modes on a large set of high resolution images as training data. The prediction consists of the following three steps:

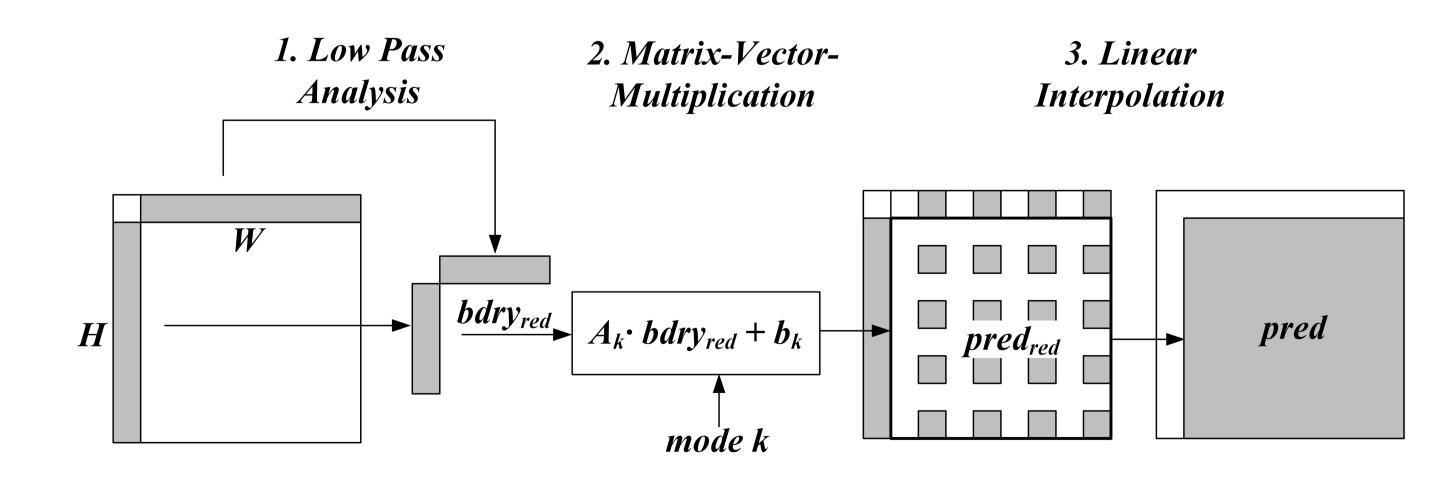


Fig. 2 Flow chart of the trained intra prediction.

**Low pass analysis.** The low-pass-filtered boundary  $bdry_{red}$  consists of two samples along each axis in the case of (4,4)-blocks and four samples else. Given the width  $W = 4 \cdot 2^n, n \ge 0$ , one computes

$$\operatorname{bdry}_{red}^{top}[i] = \begin{cases} \frac{1}{2^n} \sum_{j=0}^{2^n - 1} \operatorname{bdry}^{top}[2^n i + j], & \text{if } n > 0, \\ \frac{1}{2} \left( \operatorname{bdry}^{top}[2i] + \operatorname{bdry}^{top}[2i + 1] \right), & \text{else.} \end{cases}$$
(1)

The low subband of the left boundary  $bdry_{red}^{left}$  is obtained analogously.

Matrix-Vector-Multiplication. Given the prediction mode k, the low subband of the prediction signal  $\operatorname{pred}_{red}$  is computed as

$$\operatorname{pred}_{red} = A_k \cdot \operatorname{bdry}_{red} + b_k. \tag{2}$$

The dimension  $(W_{red}, H_{red})$  of the low-pass signal pred<sub>red</sub> equals (4, 4) if  $\max(W, H) \leq 8$ . In any other case holds

$$(W_{red}, H_{red}) = (\min(W, 8), \min(H, 8)).$$
 (3)

The expression (2) requires not more than 4WH multiplications.

**Linear interpolation.** Assume  $W \ge H$ . Hence interpolate first vertically, then horizontally. The interpolated signal  $\operatorname{pred}_{red}^{up}$  is given for  $y = 0, ..., H_{red} - 1, x = 0, ..., W_{red} - 1$  as

$$\operatorname{pred}_{red}^{up}[x][2y+1] = \operatorname{pred}_{red}[x][y],$$

$$\operatorname{pred}_{red}^{up}[x][2y] = \frac{1}{2}(\operatorname{pred}_{red}[x][y-1] + \operatorname{pred}_{red}[x][y]).$$
(4)

The step (4) is carried out n times until  $2^n H_{red} = H$ .

#### Training design.

- We train a single joint layer and N different linear output layers.
- Simplify after training by multiplying the weights from both layers.
- The predictors for shapes (4,4), (8,8) and (16,16) are trained jointly in one run using a recursive quad-tree.

#### Memory assessment.

| Shape $(W, H)$     | Input dim | Output dim | Nr. of $(A_k, b_k)$ | Bits per entry | Memory in kB |
|--------------------|-----------|------------|---------------------|----------------|--------------|
| W = H = 4          | 4         | 16         | 18                  | 10             | 1.8          |
| $\min(W, H) \le 8$ | 8         | 16         | 18                  | 10             | 3.24         |
| else               | 8         | 64         | 18                  | 10             | 12.96        |

### Loss function

Given the DCT-transformed residuals of prediction mode k by  $c_k = T(\text{org} - \text{pred}_k)$ , we approximate the bit-rate of the residuals as

$$L(\text{org}, k) = \sum_{i=1}^{WH} (|(c_k)_i| + \alpha g(\beta |(c_k)_i| - \gamma)) = \sum_{i=1}^{WH} l((c_k)_i), \quad (5)$$

where  $\alpha, \beta, \gamma$  are hand-tuned parameters. The total loss of a block is modelled as the sum of L and the signalling cost for the mode index k.

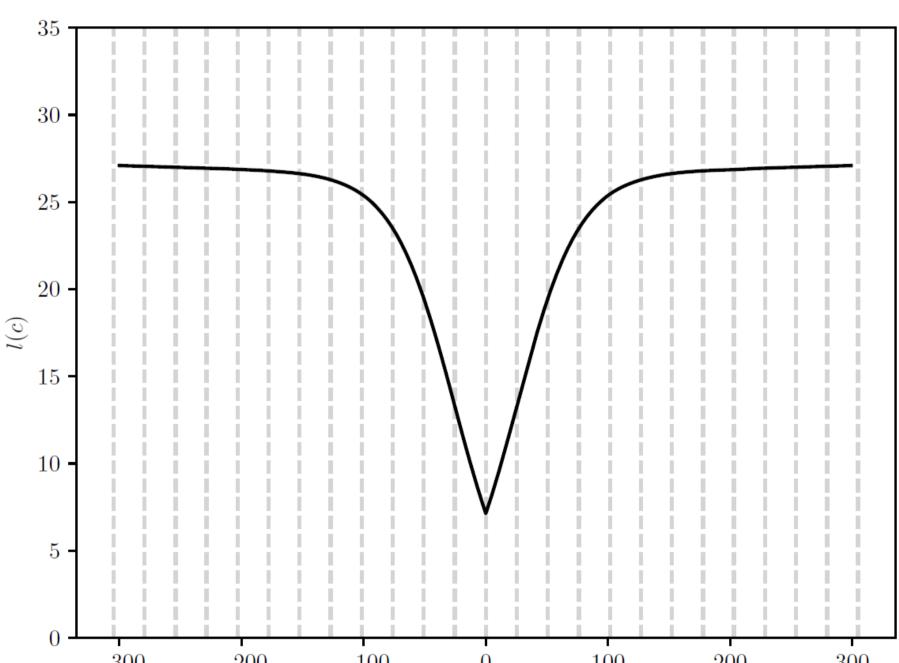


Fig. 3 Profile of the function l in (5).

It penalizes nonzero coefficients. For large coefficients, the curve flattens.

# Experimental results and conclusion

| All Intra | $\mathbf{Y}$ | Enc Time | Dec Time |
|-----------|--------------|----------|----------|
| Class A1  | -1.38%       | 152%     | 104%     |
| Class A2  | -0.75%       | 151%     | 103%     |
| Class B   | -0.79%       | 155%     | 101%     |
| Class C   | -0.86%       | 154%     | 100%     |
| Class E   | -1.11%       | 151%     | 98%      |
| Overall   | -0.95%       | 153%     | 101%     |

**Table 1** BD-rate savings over VTM-3.0 (CTC; JVET-L1010).

- Novel data-driven training of affine-linear intra prediction modes
- Subband decomposition leads to memory and complexity reduction
- Good trade-off between memory, complexity and bit-rate savings
- Matrix-based Intra Prediction has developed from this research and is adopted into VVC Draft 5; *JVET-N1001*.