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• Motivation: Recently, CNN-based models have been proposed to
improve recovery performance for image compressive sensing.
However, 1: Previous methods concentrate on optimize inverse
reconstruction part, while neglect optimizing measurement
matrix in compressive sample process . 2: Previous methods use
simple network architecture to implement reconstruction task,
which cannot fully exploit powerful learning ability of CNN.

• For above issues, we propose an end-to-end multi-scale residual
neural network, dubbed as MSRNet, contributions of our
MSRNet are following:

• We apply fully-connected layer as measurement matrix to
implement compressively sample task, replacing traditional
random Gaussian matrix, which is not so friendly for hardware.

• We integrate compressive sample and inverse reconstruction
parts to one end-to-end model, so we actually optimize an end-
to-end CNN instead of optimizing each part respectively

• Multi-scale residual network is introduced to extract different-
scale feature information, and cross connection is introduced to
fuse information from different-scale level.

• Accuracy and time complexity: our method achieves significant
performance improvement on test datasets with competitive
time complexity, a test image is shown in Fig.1,

INTRODUCTION & MOTIVATION

CONCLUSION
In this paper, we proposed an end-to-end multi-scale residual

network for image compressive sensing. By training a CNN based on
end-to-end optimization, difficulty of generating hardware-friendly
measurement matrix is alleviated. Moreover, multi-scale residual is
introduced to enhance learning ability for multi-scale information and
contribute to achieve better reconstruction quality.

PROPOSED METHOD

• As is shown in Fig.2, MSRNet includes three parts: compressive
sample, initial reconstruction, multi-scale residual reconstruction.

• compressive sample part includes 1 reshape layer and 1 fully-
connected layer, which is used for reshape input image patch and
compressively sample original pixels.

• initial reconstruction part includes 1 reshape layer and 1 fully-
connected layer, which is used for initially restore original pixels
and reshape them to one patch.

• multi-scale residual reconstruction part is used to further enhance
recovery accuracy based on initial reconstruction image, the basic
block in the part is MSRB, whose detail is shown in Fig.3.
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Fig.1 PSNR and time for recovering image “Parrots” at MR=10%

Fig.2 framework of  MSRNet
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Fig.3 Structure of MSRB in multi-scale residual reconstruction model
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 Fig.4 Reconstruction results of image “flinstones” (the top picture) 
at MR=25% and image “peppers” (the bottom picture) at MR=4%.


