2019

INTRODUCTION & MOTIVATION

- **Motivation**: Recently, CNN-based models have been proposed to improve recovery performance for image compressive sensing. However, 1: Previous methods concentrate on optimize inverse reconstruction part, while neglect optimizing measurement matrix in compressive sample process . 2: Previous methods use simple network architecture to implement reconstruction task, which cannot fully exploit powerful learning ability of CNN.
- For above issues, we propose an end-to-end multi-scale residual neural network, dubbed as MSRNet, contributions of our MSRNet are following:
- We apply fully-connected layer as measurement matrix to implement compressively sample task, replacing traditional random Gaussian matrix, which is not so friendly for hardware.
- We integrate compressive sample and inverse reconstruction parts to one end-to-end model, so we actually optimize an endto-end CNN instead of optimizing each part respectively
- Multi-scale residual network is introduced to extract differentscale feature information, and cross connection is introduced to fuse information from different-scale level.
- Accuracy and time complexity: our method achieves significant performance improvement on test datasets with competitive time complexity, a test image is shown in Fig.1,

23.94dB/0.057s 22.63dB/ 0.019s Ground truth **DR²-Net** ReconNet Fig.1 PSNR and time for recovering image "Parrots" at MR=10%

AN END-TO-END MULTI-SCALE RESIDUAL RECONSTRUCTION NETWORK FOR IMAGE COMPRESSIVE SENSING Renhe Liu, Sumei Li, Chunping Hou e-mail: l1652513704@163.com School of Electrical and Information Engineering, Tianjin University, China

28.24dB/0.107s **Our MSRNet**

Fig.3 Structure of MSRB in multi-scale residual reconstruction model

- As is shown in Fig.2, MSRNet includes three parts: compressive sample, initial reconstruction, multi-scale residual reconstruction.
- compressive sample part includes 1 reshape layer and 1 fullyconnected layer, which is used for reshape input image patch and compressively sample original pixels.
- connected layer, which is used for initially restore original pixels and reshape them to one patch.
- multi-scale residual reconstruction part is used to further enhance block in the part is MSRB, whose detail is shown in Fig.3.

initial reconstruction part includes 1 reshape layer and 1 fully-

recovery accuracy based on initial reconstruction image, the basic

EXPERIMENT RESULTS Algorithm. TVAL3-D-AMP∉ SDAReconNet_ℓ DR²-Net₽ ISTA-Net₽ MSRNet₽ Algorithm. TVAL3+ D-AMP₄ SDA₽ ReconNet₽ DR²-Net₽ MSRNet₽ ReconNet/19.56dB Ground truth - CONCLUSION

In this paper, we proposed an end-to-end multi-scale residual network for image compressive sensing. By training a CNN based on end-to-end optimization, difficulty of generating hardware-friendly measurement matrix is alleviated. Moreover, multi-scale residual is introduced to enhance learning ability for multi-scale information and contribute to achieve better reconstruction quality.

Table. 1 Mean PSNR results on Set11 at various MR+ Measurement Rate

25‰₽	10‰	4‰	1‰	
27.84₽	22.84	18.39 ₽	11.31	
28.17	21.14	15.49₽	5.19 ₽	
24.72₽	22.43₽	19.96₽	17.29₽	
25.54₽	22.68	19.99₽	17.27	
28.66₽	24.32₽	20.80	17.44₽	
31.53₽	25.80₽	21.23+	17.30	
33.36	28.07₽	24.23+	20.08	

Table. 2 Time complexity of different algorithms -

Time Complexity (s)₽				
MR=0.25	MR=0.1~	MR=0.04+2	MR=0.01	
2.943	3.223+2	3.467₽	7.790₽	
27.764	31.849	34.207	54.643₽	
0.0042	0.0029	0.0025	0.0045	
0.0213	0.0195	0.0192	0.0224	
0.0600₽	0.0576₽	0.0565₽	0.0557₽	
0.1091	0.1082	0.1070	0.1068	

DR²-Net /20.32dB MSRNet/23.91dB Fig.4 Reconstruction results of image "flinstones" (the top picture) at MR=25% and image "peppers" (the bottom picture) at MR=4%.