

INTRODUCTION

- In this paper, we propose an adaptive hard example mining method with additional supervised training for image captioning.
- Beam search algorithm is leveraged to estimate score expectation for each example. Examples whose caption scores are lower than expectation are selected automatically.
- For the selected hard examples, we propose an additional reward policy for high-scoring captions to force model learning from them. The proposed method is hyper-parameter free without tuning.

EXAMPLES

Easy Example	Captions	CIDEr		
Beam search	A group of men standing around a table with pizza.			
Results	A group of people standing in a kitchen.			
Greedy Result	A group of people standing around a table with food.			
Hard Example	Captions	CIDEr		
Beam search	A man in a suit and tie standing in front of a door.			
Results	A man smiling and walking through a doorway.			
Greedy Result	A man in a suit and tie standing in a doorway.			
Our ResultA black and white photo of a man in a suit.				
Hard Example	Captions	CIDEr		
Beam search	A little girl standing next to a red bike.			
Results	A young girl standing next to a red bench.			
Greedy Result	A woman standing next to a red bench on a sidewalk.			
Our ResultA little girl standing next to a red bike in a sidewalk.				

ADAPTIVE HARD EXAMPLE MINING FOR IMAGE CAPTIONING

Yongzhuang Wang, Yangmei Shen, Hongkai Xiong, Weiyao Lin

Shanghai Jiao Tong University e-mail: wang_yongzhuang@outlook.com

ALGORITHM

Algorithm 1 The proposed adaptive hard example mining and additional training for hard examples. **Input:** The training set of image and captioning pairs; The model parameter θ and loss function $L(\theta, r)$; The beam size k in beam search algorithm; **Output:** Model parameter θ . 1: while Not converge do ground-truth w^g ; Get k-beam search results $\{w^{(1)}, \ldots, w^{(k)}\};$ ${r(w^*), s^m, s^{(1)}, \dots, s^{(k)}};$ Get score expectation $s^p = E(\{s^{(1)}, \dots, s^{(k)}\})$ if $s^m < s^p$ then 8: Add additional $s^p - s^m$ to basic reward; 9: end if 10: Get loss $L(\theta, r)$; 11: 13: end while 14: **return** Model parameter θ ; TRAINING $r(w^*)$ Sample top k Beam Search argmax **Greedy Decoding**

HARD EXAMPLE RATE

Since we select hard examples automatically in the training, the hard example rate reduces along with training and model performance improvement.

RESULTS

We train several models with the proposed method, results in the figure show that our training method can improve model performance significantly.

Model

Att2in [13]

Att2all [13]

Up-Down [

	Methods	B-4	Μ	R	С
3]	XE	31.3	26.0	54.3	101.3
	MIXER* [9]	32.2	25.9	54.8	106.9
	SCST [13]	33.3	26.3	55.3	111.4
	Ours	34.4	27.0	55.8	114.7
3]	XE	30.3	25.9	53.4	99.4
	MIXER [9]	32.8	25.2	26.1	110.5
	SCST [13]	34.2	26.7	55.7	114.0
	Ours	35.9	27.2	56.1	117.5
[6]	XE	36.2	27.0	56.4	113.5
	MIXER* [9]	35.5	27.2	56.5	115.3
	SCST [13]	36.3	27.7	56.9	120.1
	Ours	37.4	27.7	57.0	123.1