Long & Short Memory Balancing In Visual Co-tracking using Q-learning
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Q-Learning for Tuning Active Co-Tracker
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Tracking Challenges:

» changes in illumination, camera pose,
cluttered background, occlusions, etc.

Tracking-by-Detection Challenges:
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What is it?
Two or more classifiers learns from each other ONLY for
the samples they have MOST difficulty labeling.

What is the uncertainty signal?
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