

#### L. INTRODUCTION

#### **Challenges:**

- Scale variation problem is caused by depth changes in crowd images.
- Limitation of crowd dataset (only few hundreds labeled images are available)



#### Goal

Given a crowd image, we build a compact CNN architecture to count number of people and estimate density map that could handle the scale variation problem



#### 2. PROPOSED METHOD

- Multi-task network is trained on separated and individual datasets
- Framework consists of two branches corresponding to two tasks:
  - Crowd density map estimation (main task)
  - Depth map estimation (auxiliary task)

#### DA-NET: DEPTH AWARE NETWORK FOR CROWD COUNTING Van-Su Huynh **Ching-Chun Huang Vu-Hoang Tran** National Chiao Tung National Chung Cheng University of Technology and University, Taiwan Education, Vietnam University, Taiwan





#### **Encoder:**

- Use basic CNNs-based architecture (VGG16)
- Share weights between two tasks

#### **Decoder:**

- The decoder is independent for each task lacksquare
- Adopt U-net architecture to take advantage of both low-level and high-level features for the estimation

#### **Overall loss:**

End-to-end training with overall loss:  $L = L_{den} + \gamma L_{dep}$ 

where  $L_{den}$ ,  $L_{dep}$  are Euclidean distances for density map estimation and depth map estimation tasks, respectively.

## **3. EXPERIMENTAL RESULTS**

#### **Quantitative results**

|                               | ShanghaiTech |       |        |      | UCF_CC_50 |       |
|-------------------------------|--------------|-------|--------|------|-----------|-------|
| Method                        | Part_A       |       | Part_B |      | UCF_CC_50 |       |
|                               | MAE          | MSE   | MAE    | MSE  | MAE       | MSE   |
| Zhang et al., CVPR 2015       | 181.8        | 277.7 | 32.0   | 49.8 | 467.0     | 498.5 |
| MCNN, CVPR 2016               | 110.2        | 173.2 | 26.4   | 41.3 | 377.6     | 509.1 |
| Switch-CNN, CVPR 2017         | 90.4         | 135.0 | 21.6   | 33.4 | 318.1     | 439.2 |
| Sindagi et al., AVSS 2017     | 101.3        | 152.4 | 20.0   | 31.1 | 322.8     | 397.9 |
| CP-CNN, ICCV 2017             | 73.6         | 106.4 | 20.1   | 30.1 | 295.8     | 320.9 |
| DecideNet, CVPR 2018          | _            | _     | 20.8   | 29.4 | -         | _     |
| Liu <i>et al.</i> , CVPR 2018 | 73.6         | 112.0 | 13.7   | 21.4 | 279.6     | 388.9 |
| Our DAnet                     | 71.4         | 120.6 | 9.1    | 14.7 | 268.3     | 373.2 |
|                               |              |       |        |      |           |       |

# **Result Illustrations**



#### **Feature Visualization**

Using guided backpropagation to visualize the learning features



VGG W/Odepth



### 4. CONCLUSION

- variation problem.



GT

GT: 82

#### ShanghaiTech dataset

UCF\_CC\_dataset Est count: 736

# Input image

7<sup>th</sup> convolution 13<sup>th</sup> convolution Estimation GT: 75

• By leveraging the auxiliary depth estimation dataset, an alternative and novel way was proposed to handle the scale

• Our DAnet is trained for two tasks simultaneously: density map estimation and depth map estimation using separated crowd and depth datasets. The experiments demonstrate the efficiency of the proposed method over the state-of-the-art methods.