Spatially Regularized Multi-exponential Transverse Relaxation Times
Estimation from Magnitude Magnetic Resonance Images Under Rician Noise
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Detailed tissue characterization using MRI relaxaometry requires (i)
estimation of multi-exponential relaxation times T, and thelr associated
amplitude A, on the image level. However, estimating the model
parameters for magnitude data Is a large-scale Ill-posed Inverse
problem, In the particular context of Rician noise. This problem has not
been solved yet, only local filtering technique was proposed.

WWe propose

» A parameter estimation method that combines a spatial
regularization with a Maximume-Likelihood criterion based on the
Rician distribution of the noise.

* A Majorization-Minimization approach alongside an adapted non-
linear least-squares Levenberg-Marguardt algorithm.

* Atissue characterization method for exploiting the reconstructed
maps by clustering the parameters using a K-means classification
algorithm applied to the extracted relaxation time and

amplitude maps.
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If the Rician noise distribution is not properly accounted for, this
leads to a bias on the estimated parameters.
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Proposed parameter estimation algorithm
Regularized maximum-likelihood:
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By adopting a Majoration-Minimization technique, the minimization of
F(m, 0) is carried out by a serie of quadratic minimizations of the following
criterions:
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ok , 1, (+) is the first kind modified Bessel function of first order.
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At each iteration k, the Levenberg-
Marquardt algorithm was used
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with the following adaptations :

e A maximum step-size that
guarantees the parameters
positivity.

e A step search approach using a
backtracking technique based on
the Armijo line search to find a
step-size  that ensures the
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A circular phantom was
constructed on an image
of 128 x 128 voxels. At
each part of the phantom,
a tri-exponential (N, = 3)
model was generated. T,
and A, values were
chosen to be close to
parameters typically
found in tomato fruits.
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Simulated data : a low NRMSE was obtained for the regularized version
4:47% , for the non regularized version ( B = 0) NRMSE was 22:85%.
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For the experimental
(Tomato) MRI settings, a
Multi-SE sequence was
used on a 1.5T MRI
scanner with inter-echo
spacing of 6.5ms,
bandwidth of 260
Hz/pixel, 512 echoes per
echo train. The
reference maps were
acquired with 32 scans
in order to obtain higher
SNR and are compared
to maps acquired with 1
scan (low SNR).
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Images reconstructed from low and high SNR
data are quite similar, validating the robustness
of the method to different noise levels. (NRMSE

equal to 5:56%).
Future work

Locular tissue ¢

Clustering the image using a
classification algorithm (k-means)
using the extracted parameters as

Radial pericap features.

External pericap




