Dual Reverse Attention Networks for Person Re-identification

Shuangwei Liu, Lin Qi, Yunzhou Zhang, Weidong Shi

Northeastern University

Person Re-identification

Aims at retrieve images belonging to the same person identity to query

Given a person of interest, Re-id spots his appearance at:

other time

other location

other cameras

Person Re-identification

training

testing

Challenge

Due to pedestrian images being taken at different times and cameras, the environmental settings like background clutter, illumination as well as human attributes like posture and clothing are quite various.

This requires the Re-ID model to be invariant to visual cues, especially hard examples with complex deformation, occlusion and low resolution

Existing Method : hard examples mining

Offline mining

Online mining

Ahmed E et. al, An improved deep learning architecture for person re-identification, in CVPR 2015 Hermans A et. al, In defense of the triplet loss for person re-identification, in arXiv 2017.

Existing Method : hard examples generating

Offline generating

Occluded-REID

Online generating

Zhuo Jiaxuan et. al, "Occluded person re-identification." in ICME 2018. Zhong Z et al., Random erasing data augmentation in arXiv 2017

Proposed Framework

- •Hard examples generating in the convolutional space
- •Powered by reverse attention modules

CIC : channel information captor

SIC : spatial information captor

RCAM: reverse channel attention module

RSAM: reverse spatial attention module

Fig. 1. Illustration of Dual Reverse Attention Networks(DRANet).

Proposed Framework

Fig. 2. Illustration of generating channel hard examples.

$$H_n = f_{1\times 1}(f_{3\times 3}(\boldsymbol{B}))[n,:,:]$$
$$\overline{H}_n = (1 - H_n)^{\alpha_s}$$
$$\boldsymbol{D} = \boldsymbol{B} \cdot \overline{H}_n = \boldsymbol{B} \cdot (1 - H_n)^{\alpha_s}$$

Fig. 3. Illustration of generating spatial hard examples.

Experiment results

Comparison with the State-of-the-art

Method	rank1	rank5	rank10	mAP
DLPAR [10]	81.0	92.0	94.7	63.4
SVDNet [23]	82.3	92.3	95.2	62.1
Triplet Loss [4]	84.9	94.2	-	69.1
IDE+RE [9]	85.2	-	-	68.3
AOS [21]	86.5	-	-	70.4
HA-CNN[11]	91.2	-	-	75.7
PCB [22]	92.3	97.2	98.2	77.4
Ours (DRANet)	92.9	97.2	98.3	79.7

Table 1. Evaluation on Market-1501.

Table 3. Evaluation on CUHK03

Method	Rank1	mAP
IDE+RE [9]	41.5	36.8
SVDNet [23]	41.5	37.3
HA-CNN [11]	41.7	38.6
AOS [21]	47.1	43.3
PCB [22]	59.7	53.2
Ours (DRANet)	61.7	58.6

Table 2. Evaluation on DukeMTMC-reID.

Method	rank1	mAP
IDE+RE [9]	74.2	56.2
SVDNet [23]	76.7	56.8
AOS [21]	79.2	62.1
HA-CNN [11]	80.5	63.8
PCB [22]	81.7	66.1
Ours (DRANet)	84.3	69.5

Experiment results

Comparison with the baseline

Lable 4. Comparison	of different revere attention modules
1	

Dataset	Method	rank1	rank5	mAP
Market-1501	Baseline	91.5	96.6	77.5
	Baseline+RCAM	92.7	96.9	79.5
	Baseline+RSAM	92.1	96.6	79.4
	Baseline+RCAM+RSAM	92.9	97.2	79. 7
DukeMTMC-reID	Baseline	81.3	89.0	65.5
	Baseline+RCAM	82.8	91.4	68.2
	Baseline+RSAM	84.0	91.8	70.2
	Baseline+RCAM+RSAM	84.3	90.7	69.5
СИНК03	Baseline	55.1	73.2	52.1
	Baseline+RCAM	58.6	77.6	56.3
	Baseline+RSAM	59.9	78.5	58.1
	Baseline+RCAM+RSAM	61.7	78.1	58.6

Fig. 4. Ranking list of whether using RCAM and RSAM.

Main Contribution

•Hard examples generating in the convolutional feature space

•A novel dual reverse attention networks (DRANet)

Thank You