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Why metrology?

▶ Metrology → science of measurement 

▶ Hyperspectral imaging → dense spectral sampling
▪ measurement of surface physical / optical properties
▪ direct relationship between image and physical content

▶ Complete physical meaning to be preserved
▪ accuracy, uncertainty and bias are quantifiable 

(a) (c)(b)

FIGURE 1* - (a) Gray-scale, (b) color,  (c) hyperspectral image

*  Adapted from Li, Q., He, X., Wang, Y., Liu, H., Xu, D., and Guo, F., “Review of Spectral Imaging Technology in Biomedical Engineering: 

Achievements and Challenges,” J. Biomed. Opt., 18, 10 (2013).
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Overview of texture analysis

▶ State of the art: co-occurrence matrix [1], local binary pattern [2] etc.
▪ originally developed for grayscale images

▶ Adaptation for hyperspectral images with 𝐿 bands → metrologically invalid
▪ cross-channel processing [3]
▪ band-by-band (marginal) processing [3]

(a) (b)

FIGURE 2 – (a) Cross-channel, (b) band-by-band
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Problems of hyperspectral texture analysis

▶ Curse of dimensionality
▪ band selection [4,5,6], dimensionality reduction [7,8,9]
▪ result dependent on data → incomparable

▶ Spectrum → continuous function 𝑓 𝜆 over the wavelength 𝜆
▪ hyperspectral acquisition → discrete sequence 𝑆 = 𝑠 𝜆 , ∀𝜆 𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥
▪ spectral bands → highly correlated, not independent
▪ vectorial representation, L2-norm → not adapted

FIGURE 3* - Hyperspectral acquisition: continuous → discrete

*  Adapted from Lu, G., and Fei, B., “Medical Hyperspectral Imaging: A Review,” Journal of Biomedical Optics, 19, 1 (2014).
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Defining texture
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Defining hyperspectral texture as …

FIGURE 4 - Sample spectra from texture
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… a joint spectral and spatial distribution.

(a) (c)(b)

FIGURE 5 – (a) Texture = (b) spectral + (c) spatial distribution
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FIGURE 6 – rSDOM in proposed texture definition
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Hyperspectral texture feature
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From psychophysical research to application

▶ Julesz conjecture: texture discrimination from low-order statistics [10]
▪ probability of a chosen point having certain value → spectral distribution
▪ probability of two chosen points having certain values → spatial distribution

▶ Co-occurrence matrices → distribution of pixel pairs defined by an offset Ԧ𝑣

1 1 5 6 8

2 3 5 1 2

4 5 1 2 2

8 5 1 2 5

Ԧ𝑣 1 2 3 4 5 6 7 8

1 1 3 0 0 1 0 0 0

2 0 1 1 0 1 0 0 0

3 0 0 0 0 1 0 0 0

4 0 0 0 0 1 0 0 0

5 3 0 0 0 0 1 0 0

6 0 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0 0

8 0 0 0 0 1 0 0 0

j
i

(a) (b)

FIGURE 7 – (a) Gray-scale image → (b) co-occurrence matrix
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Approximation by sum and difference histograms

▶ Original definition → impractical for hyperspectral image
▪ Unser [11]: approximation by sum (spectral) and difference (spatial) histograms

▶ Full-band processing → spectral difference of pixel pair
▪ band selection, dimensionality reduction → not required
▪ analysis independent from spectral count → metrological approach

(a) (c)(b)

FIGURE 8 – Illustrations of histogram from: 
(a) gray-scale, (b) color, (c) hyperspectral image
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Describing spatial distribution:
Spectral Difference Occurrence Matrix

Define Ԧ𝑣 with distance 𝑙 and orientation θ

Determine pixel pairs 𝑆𝑖 , 𝑆𝑗 with Ԧ𝑣

Express spectral difference ∆𝑆 of all pairs as probability distribution

1

2

3

(a) (c)(b)

FIGURE 9 – Calculating SDOM: (a) pick Ԧ𝑣 , (b) pixel pairs,
(c) spectral difference → probability distribution
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SDOM: a working example

(a) (c)(b)

FIGURE 10 – (a) Texture; (b) magnified: texton (yellow), 
background (cyan), (c) SDOM
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SDOM: a working example

(a) (c)(b)

FIGURE 10 – (a) Texture; (b) magnified: texton (yellow), 
background (cyan), (c) SDOM
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SDOM: more examples

FIGURE 11 – More SDOM examples
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Spectral-spatial analysis: Relocated 
Spectral Difference Occurrence Matrix

▶ Spectral distribution → average spectrum 𝑆𝜇

▶ SDOM shifted with ∆𝑆𝜇 between texture → rSDOM

+ 𝝁
+

𝝁

rSDOM

FIGURE 12 – Illustrations for (a) SDOM, (b) rSDOM

(a) (b)
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Metrological calculation of spectral difference 

▶ Kullback-Leibler pseudo-divergence (KLPD) [12]
▪ considers spectrum as function → metrologically valid
▪ separates spectral shape ∆𝐺 and intensity difference ∆𝑊
▪ rSDOM → 2D probability distribution
▪ not limited to any spectral difference formula

+
𝝁

+ 𝝁 +𝑮 𝑮𝝁

+
𝝁

KLPD

𝑳𝒐𝒘 𝒑𝒓𝒐𝒃.

𝑯𝒊𝒈𝒉 𝒑𝒓𝒐𝒃.

FIGURE 13 – (a) General formulation, (b) with KLPD

(a) (b)
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Experiment and analysis 
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Texture classification on HyTexiLa [3] dataset 

▶ 112 textured images, spectral range: 405.37 nm - 995.83 nm (186 bands)

▶ Each image split into 25 patches → training: 12, testing (classification): 13

FIGURE 14 – Samples from HyTexiLa
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Classification accuracy

▶ Classification with 10 trials → results averaged
▪ calculated with 𝑙 = 3, 𝜃 = 0 (mono-scale, mono-direction)

▶ Compared with opponent band local binary patterns (OBLBP) [18]
▪ calculated with 𝑙 = 1 with 𝑃 = 8 neighbors (multi-direction)
▪ cross-channel processing on 18 selected channels

Method Accuracy (%) Metrology

Average spectrum 92.0 ± 0.2 -

SDOM 62.1 ± 0.3 -

rSDOM 94.7 ± 0.1

OBLBP 98.76

TABLE 1 – Comparison of classification accuracy

rSDOM,

OBLBP

SDOM

Avg. spe.

spectral spatial



23

Discussion

▶ rSDOM → excellent performance
▪ misclassification mainly in wood and vegetation images
▪ average spectrum → partial spectral analysis
▪ texture directionality and scale variability not considered

▶ Limitation induced by Gaussian modelling of rSDOM
▪ in return for smaller feature

▶ For image with 𝑁 pixels, 𝐿 bands, assessment in 𝑃 directions and ෨𝐿 bands:

rSDOM Aspect OBLBP

𝐿 + 6 Feature size ෨𝐿2 ∙ 2𝑃

𝒪 𝑁 ∙ 𝐿 Complexity 𝒪 𝑁 ∙ 𝑃 ∙ 2෨𝐿

TABLE 2 – Comparison of feature size and complexity
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Conclusion
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A new metrological texture concept

▶ Generic formulation: independent of sensor resolution
▪ applicable for gray-scale, color images

▶ Metrological construction: operation in difference space
▪ full band processing → all physical meaning preserved

▶ Adaptive feature: separation of spectral and spatial dimension
▪ for invariance to light changes, use SDOM

▶ Efficient description and discrimination
▪ small feature size and low complexity

▶ Future work since ICIP
▪ analysis with full spectral distribution (RSDOM, accepted into WHISPERS 2019)
▪ multi-scale and multi-direction feature
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