

Ceatech **CONTACT:** Wissam BENJILALI | Wissam.benjilali@cea.fr HARDWARE-FRIENDLY COMPRESSIVE IMAGING BASED ON RANDOM MODULATIONS **& PERMUTATIONS FOR IMAGE ACQUISITION AND CLASSIFICATION**

Insights

- New Compressive Sensing (CS) scheme.
- generated matrix.

CMOS implementations.

order 2k if there exists a $\delta_{2k} \in (0,1)$ such that:

 $\mathbb{E}(\|\mathbf{\Phi} u\|_2^2) = \|u\|_2^2$

by Parseval's identity if Ψ is an orthonormal basis.

(right) Histogram of distances to the bisector axis.

Proposed CS model

 $\boldsymbol{\Phi} = \frac{1}{\sqrt{s}} \left(\left(\boldsymbol{P}^{(1)} \boldsymbol{M}^{(1)} \right)^{\mathsf{T}}, \dots, \left(\boldsymbol{P}^{(s)} \boldsymbol{M}^{(s)} \right)^{\mathsf{T}} \right)^{\mathsf{T}} \in \mathbb{R}^{sn_c \times n_r n_c}$

modulation vector applied to the j^{th} row of **U**. $(1 \leq s \leq n_c).$

→ $P^{(i)} = (p_1^{(i)}, ..., p_{n_r}^{(i)}) \in \{0, 1\}^{n_c \times n_r n_c}$, with $p_i^{(i)} \in \{0, 1\}^{n_c \times n_c}$ is a random permutation matrix applied to the j^{th} row of **U**. → $M^{(i)} = diag(\varphi_1^{(i)}, ..., \varphi_{n_r}^{(i)})$, with $\varphi_j^{(i)} \in \{\pm 1\}^{n_c}$ Rademacher

 \rightarrow Tuned compression ratios through multiple snapshots s

Inference for two object recognition tasks.

