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INTRODUCTION
⋯WEAKLY-SUPERVISED TEMPORAL ACTION LOCALIZATION

Main Task

Temporal action localization in untrimmed videos
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• Detecting time interval which indicates where is an action content

• Detecting action class in that time which indicates what action is contained

Supervised setting

• Requiring the full annotation of the temporal boundary

• Annotating temporal boundaries for each action instance is very expensive and 

time-consuming

Skateboarding Time
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Main Task

Weakly-supervised temporal action localization

3

• Using only video-level action labels

• Much easier to collect compared to the temporal boundary annotations
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Existing Work
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• UntrimmedNet [Wang, et.al., CVPR’17]

• Sparse Temporal Pooling Network (STPN) [Nguyen, et.al., CVPR’18]

• AutoLoc [Shou, et.al., ECCV’18]

• W-TALC [Paul, et.al., ECCV’18]

Challenges

• How to deal with insufficient training data

• How to generate temporal proposals from the video-level classifier
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Existing Work

 UntrimmedNet [Wang, et.al., CVPR’17]

• Sparse Temporal Pooling Network (STPN) [Nguyen, et.al., CVPR’18]

• AutoLoc [Shou, et.al., ECCV’18]

 W-TALC [Paul, et.al., ECCV’18]
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Existing Work

• UntrimmedNet [Wang, et.al., CVPR’17]

• Sparse Temporal Pooling Network (STPN) [Nguyen, et.al., CVPR’18]

• AutoLoc [Shou, et.al., ECCV’18]

• W-TALC [Paul, et.al., ECCV’18]

Limitations

1. Difficulties on remove noisy activities since only video-level 

supervisions are provided

2. Action score map is computed without considering the score 

consistency of clips of the same class
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Motivation

• Similar actions have similar class activation scores

• Graph which represents affinities between frames (or segments) can be used 

to refine the class activation map

T-segments T-segments

Class activation map for class 𝑘

Graph

Laplacian

Regularizer

Refined class activation map

INTRODUCTION
⋯GRAPH LAPLACIAN REGULARIZATION

Goal

• Learning the accurate graph (class agnostic)

• Refining the class activation map using graph Laplacian regularization
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Optimization

T-segments T-segments

Class activation map for class 𝑘

Graph

Laplacian

Regularizer

Refined class activation map

Ƹ𝑠𝑐∗ = argmin
ො𝒔𝑐

( 𝑠𝑐 − Ƹ𝑠𝑐
2

2
+ 𝜇 ⋅ ( Ƹ𝑠𝑐)𝑇𝑳 Ƹ𝑠𝑐)

Initial class activation map

refined class activation map

Laplacian matrix of the graph

Optimization
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Overall Diagram

Input video
Feature

Extractor

Feature

Embedding

Graph

Construction

Class

Activation
Classifier

Pseudo

𝑨∗ matrix
Affinity Loss

Classification

Loss

𝑨

𝑳𝑨∗

• How to learn the feature embedding network with only video-level labels?

Generating pseudo ground truth of the affinity matrix from the 

class activation maps
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Overall Architecture

Class activation moduleIngredient 1

• Generating the class-specific activation map

• Generating the pseudo ground truth affinity matrix
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Overall Architecture

Class activation moduleIngredient 1

• Generating the class-specific activation map

• Generating the pseudo ground truth affinity matrixClass-specific activation map

• Collecting class-specific activation 

map 𝒔, after sigmoid function

• Each clip has individual score for 

every action classes
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Overall Architecture

Class activation moduleIngredient 1

• Generating the class-specific activation map

• Generating the pseudo ground truth affinity matrix

Clip-wise activation map

• Collecting highest score class 

for each clip 𝒛 = argmax
𝑐

𝒔𝑐

• Set active samples 𝒗 which have 

scores over 𝜏ℎ and under 𝜏𝑙
• Make pseudo ground truth 

affinity matrix 𝑨∗

𝑨∗ = ቊ
𝟏, 𝒊𝒇 𝒗𝒊 = 𝒗𝒋
𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
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Overall Architecture

Ingredient 2 Graph regularization module

• Embedding the features to the lower dimensional feature space

• Constructing the graph represents affinities between frames

• Solving the graph Laplacian regularization
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Overall Architecture

Ingredient 2 Graph regularization module

Graph construction

• Affinity graph: 

𝒢 ℰ, 𝒱

• Embedded feature (as a node): 

𝐞 = ℱ(𝐟;𝐰)

• Edge weight (elements of the adjacency matrix 𝐴): 

𝑤𝑖𝑗 = exp(− 𝐞𝑖 − 𝐞𝑗
2
/2𝜖2)

• Degree matrix: 

𝐷 = diag(∑𝑤𝑖𝑗)

• Graph Laplacian matrix: 

𝐿 = 𝐷 − 𝐴
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Reformulation

Graph Laplacian regularization

Ƹ𝑠𝑐∗ = argmin
ො𝒔𝑐

( 𝑠𝑐 − Ƹ𝑠𝑐
2

2
+ 𝜇 ⋅ ( Ƹ𝑠𝑐)𝑇𝑳 Ƹ𝑠𝑐)

Ƹ𝑠𝑐∗ = 𝑰 + 𝜇𝑳 −1𝑠𝑐

• With previous components, we can reformulate the optimization as an inverse 

system problem of the linear equation

Optimization

Inverse System Problem

Backpropagation details will be introduced extensions of this work!
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Loss Functions

• Affinity loss between the affinity matrix and the pseudo ground truth affinity 

matrix

• Classification loss with the video-level label

ℒtotal = ℒaff + 𝜆ℒcls

ℒaff =
1

𝑁
෍

𝑖=1

𝑁
1

𝒩 𝑖
෍

𝑗∈𝒩 𝑖

𝑨𝑖𝒋 − 𝑨𝑖𝑗
∗

2

ℒcls = −෍

𝑐=1

𝐾

𝑦𝑐 log ො𝑦𝑐 + 1 − 𝑦𝑐 log 1 − ො𝑦𝑐

Number of clips
Semantic neighbors of 𝑣𝑖

Video class GT Predicted video class
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Localize Actions

• Employing the two-stream model (RGB and optical flow)

• Each stream is trained individually, and integrated in testing phase

• Temporal proposals are extracted by applying threshold to each stream

• Final class score can be represented as

𝒔final = ෍

𝑡=𝑡𝑠

𝑡𝑒
𝛼ො𝒔𝑡,RGB

𝑐∗ + 1 − 𝛼 ⋅ ො𝒔𝑡,FLOW
𝑐∗

𝑡𝑒 − 𝑡𝑠 + 1

⋮

Output of the video classifier Class activation map for class 𝑖 and 𝑗
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Localize Actions

• Employing the two-stream model (RGB and optical flow)

• Each stream is trained individually, and integrated in testing phase

• Temporal proposals are extracted by applying threshold to each stream

• Final class score can be represented as

𝒔final = ෍

𝑡=𝑡𝑠

𝑡𝑒
𝛼ො𝒔𝑡,RGB

𝑐∗ + 1 − 𝛼 ⋅ ො𝒔𝑡,FLOW
𝑐∗

𝑡𝑒 − 𝑡𝑠 + 1

Threshold

Proposal
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THUMOS14

“Pole Vault” Successful case

Failure case

• w/o GR, FE: without graph regularization and feature embedding

• w/o FE: without feature embedding (using features from feature extractor)
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THUMOS14

• State-of-the-art performance on various threshold value for IoU

• Comparable performance to fully-supervised approach on higher threshold 

value

• w/o GR, FE: without graph regularization and feature embedding

• w/o FE: without feature embedding (using features from feature extractor)
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Limitations

• High computational cost

• Weaknesses on occlusions

Further Work

• Developing the sparse graph regularization with higher performance

• Developing the general module for various applications such as video 

summarization and spatio-temporal action localization, etc.
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