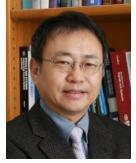


GRAPH REGULARIZATION NETWORK WITH SEMANTIC AFFINITY FOR WEAKLY-SUPERVISED TEMPORAL ACTION LOCALIZATION

Jungin Park¹

Jiyoung Lee¹

Sangryul Jeon¹



Seungryong Kim² Kwanghoon Sohn¹

····WEAKLY-SUPERVISED TEMPORAL ACTION LOCALIZATION

Main Task

Temporal action localization in untrimmed videos

- Detecting time interval which indicates where is an action content
- Detecting action class in that time which indicates what action is contained

Supervised setting

- Requiring the full annotation of the temporal boundary
- Annotating temporal boundaries for each action instance is very expensive and time-consuming

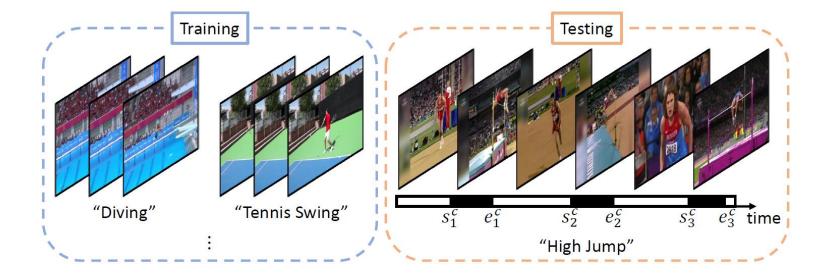
Skateboarding

WEAKLY-SUPERVISED TEMPORAL ACTION LOCALIZATION

Main Task

Weakly-supervised temporal action localization

- Using only video-level action labels
- Much easier to collect compared to the temporal boundary annotations



····WEAKLY-SUPERVISED TEMPORAL ACTION LOCALIZATION

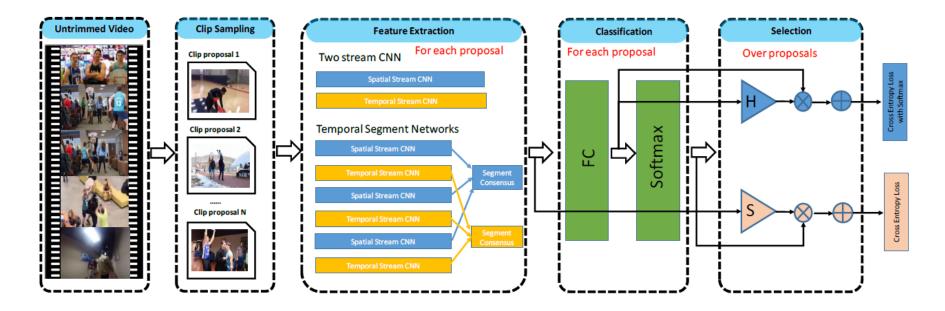
Challenges

- How to deal with insufficient training data
- How to generate temporal proposals from the video-level classifier

- UntrimmedNet [Wang, et.al., CVPR'17]
- Sparse Temporal Pooling Network (STPN) [Nguyen, et.al., CVPR'18]
- AutoLoc [Shou, et.al., ECCV'18]
- W-TALC [Paul, et.al., ECCV'18]

····WEAKLY-SUPERVISED TEMPORAL ACTION LOCALIZATION

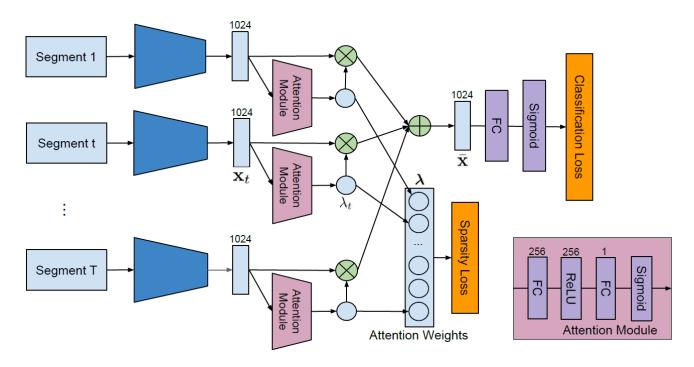
- ✓ UntrimmedNet [Wang, et.al., CVPR'17]
- Sparse Temporal Pooling Network (STPN) [Nguyen, et.al., CVPR'18]
- AutoLoc [Shou, et.al., ECCV'18]
- W-TALC [Paul, et.al., ECCV'18]



INTRODUCTION

····WEAKLY-SUPERVISED TEMPORAL ACTION LOCALIZATION

- UntrimmedNet [Wang, et.al., CVPR'17]
- ✓ Sparse Temporal Pooling Network (STPN) [Nguyen, et.al., CVPR'18]
- AutoLoc [Shou, et.al., ECCV'18]
- W-TALC [Paul, et.al., ECCV'18]



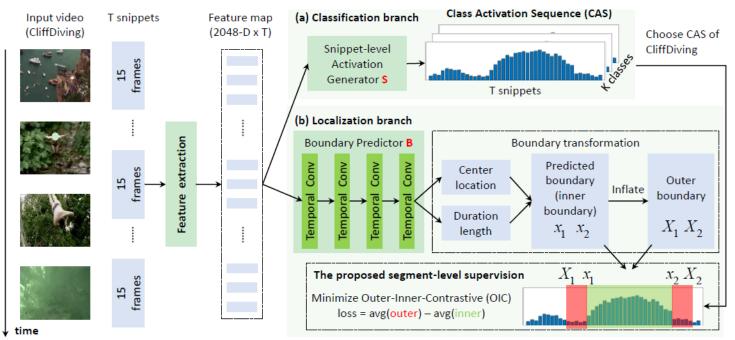
INTRODUCTION

····WEAKLY-SUPERVISED TEMPORAL ACTION LOCALIZATION

Existing Work

- UntrimmedNet [Wang, et.al., CVPR'17]
- Sparse Temporal Pooling Network (STPN) [Nguyen, et.al., CVPR'18]
- ✓ AutoLoc [Shou, et.al., ECCV'18]

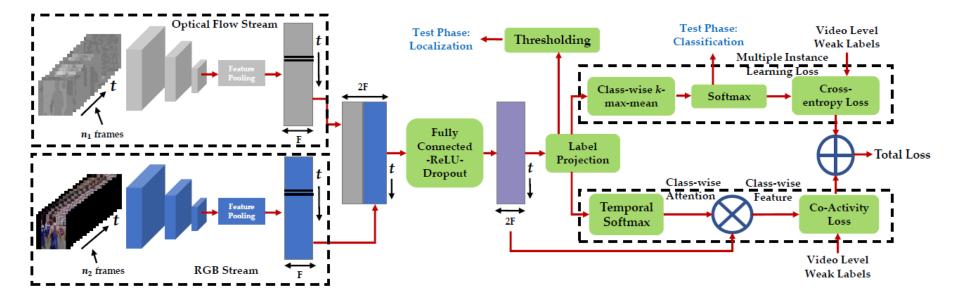
• W-TALC [Paul, et.al., ECCV'18]



INTRODUCTION

····WEAKLY-SUPERVISED TEMPORAL ACTION LOCALIZATION

- UntrimmedNet [Wang, et.al., CVPR'17]
- Sparse Temporal Pooling Network (STPN) [Nguyen, et.al., CVPR'18]
- AutoLoc [Shou, et.al., ECCV'18]
- ✓ W-TALC [Paul, et.al., ECCV'18]



····WEAKLY-SUPERVISED TEMPORAL ACTION LOCALIZATION

Existing Work

- UntrimmedNet [Wang, et.al., CVPR'17]
- Sparse Temporal Pooling Network (STPN) [Nguyen, et.al., CVPR'18]
- AutoLoc [Shou, et.al., ECCV'18]
- W-TALC [Paul, et.al., ECCV'18]

Limitations

- 1. Difficulties on remove noisy activities since only video-level supervisions are provided
- 2. Action score map is computed without considering the score consistency of clips of the same class

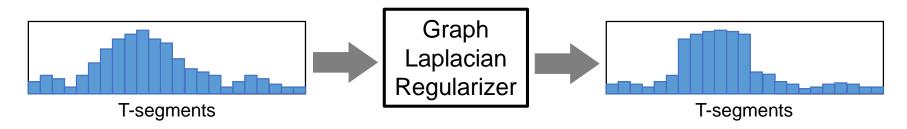
····GRAPH LAPLACIAN REGULARIZATION

Motivation

- Similar actions have similar class activation scores
- Graph which represents affinities between frames (or segments) can be used to refine the class activation map

Goal

- Learning the accurate graph (class agnostic)
- Refining the class activation map using graph Laplacian regularization

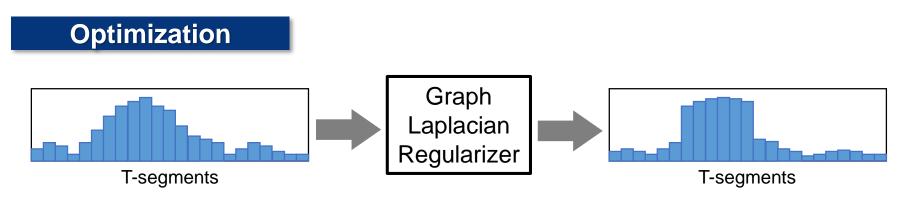


Class activation map for class k

Refined class activation map

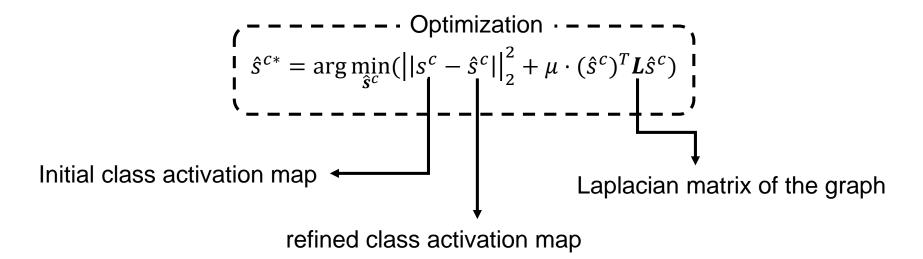
PROBLEM FORMULATION

····GRAPH LAPLACIAN REGULARIZATION



Class activation map for class k

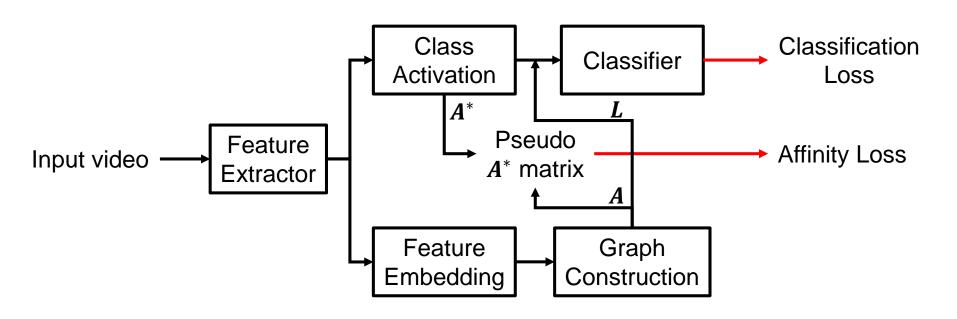
Refined class activation map



PROBLEM FORMULATION

····GRAPH LAPLACIAN REGULARIZATION

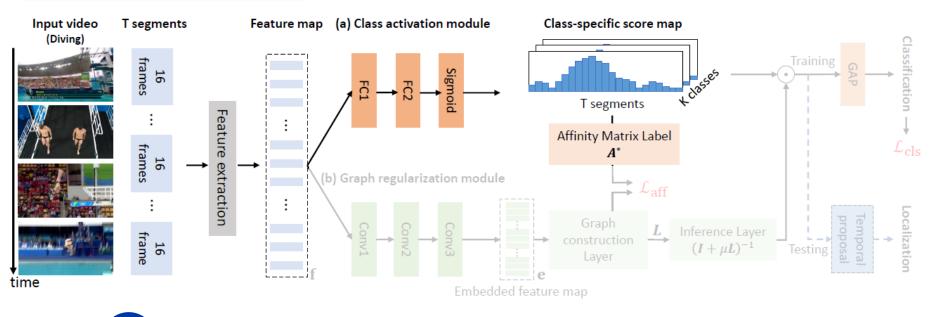
Overall Diagram



• How to learn the feature embedding network with only video-level labels?

Generating pseudo ground truth of the affinity matrix from the class activation maps

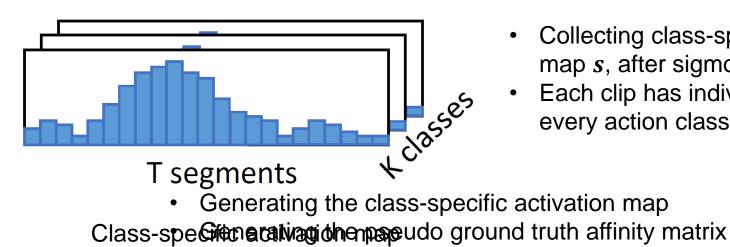
Overall Architecture



Class activation module

- · Generating the class-specific activation map
- Generating the pseudo ground truth affinity matrix

Overall Architecture



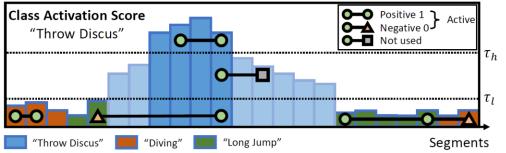
- Collecting class-specific activation map s, after sigmoid function
- Each clip has individual score for every action classes

14

Overall Architecture

Class activation module

- Generating the class-specific activation map
- Generating the pseudo ground truth affinity matrix

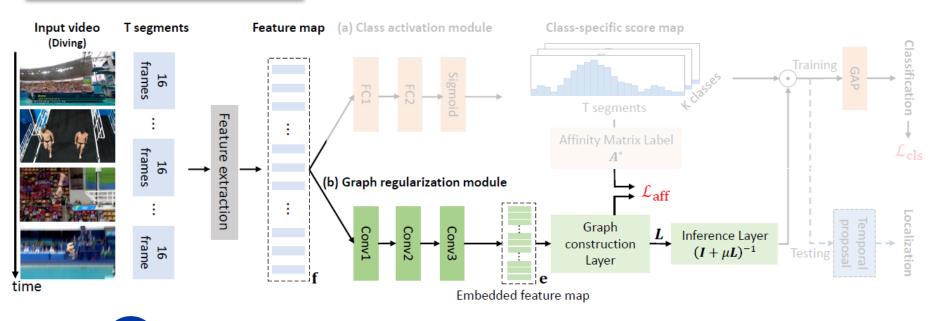


Clip-wise activation map

- Collecting highest score class for each clip $z = \arg \max_{c} s^{c}$
- Set active samples v which have scores over τ_h and under τ_l
- Make pseudo ground truth affinity matrix A*

 $A^* = \begin{cases} 1, & if \ v_i = v_j \\ 0, & otherwise \end{cases}$

Overall Architecture



Graph regularization module

- Embedding the features to the lower dimensional feature space
- Constructing the graph represents affinities between frames
- Solving the graph Laplacian regularization

Overall Architecture

Graph construction

Affinity graph:

$$\mathcal{G}(\mathcal{E},\mathcal{V})$$

Embedded feature (as a node): •

$$\mathbf{e} = \mathcal{F}(\mathbf{f}; \mathbf{w})$$

Edge weight (elements of the adjacency matrix *A*):

w_{ij} = exp($-||\mathbf{e}_i - \mathbf{e}_j||^2/2\epsilon^2$) Ingredient 2 Graph regularization module Degree matrix:

$$D = \operatorname{diag}(\sum w_{ij})$$

Graph Laplacian matrix: ٠

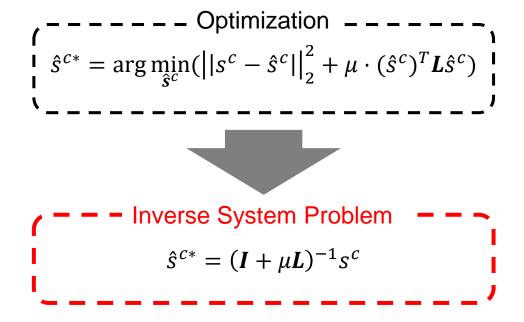
$$L = D - A$$

···INVERSE SYSTEM PROBLEM

Reformulation

Graph Laplacian regularization

• With previous components, we can reformulate the optimization as an inverse system problem of the linear equation



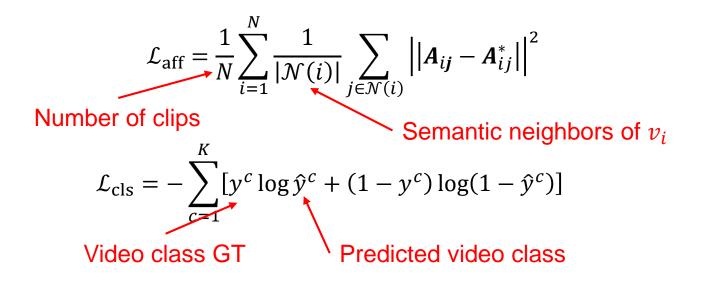
Backpropagation details will be introduced extensions of this work!

····LEARNING NETWORK PARAMETERS

Loss Functions

- Affinity loss between the affinity matrix and the pseudo ground truth affinity matrix
- Classification loss with the video-level label

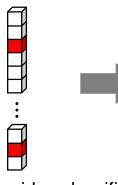
$$\mathcal{L}_{total} = \mathcal{L}_{aff} + \lambda \mathcal{L}_{cls}$$



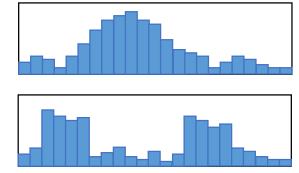
····TESTING PHASE

Localize Actions

- Employing the two-stream model (RGB and optical flow)
- Each stream is trained individually, and integrated in testing phase
- Temporal proposals are extracted by applying threshold to each stream



Output of the video classifier



Class activation map for class *i* and *j*

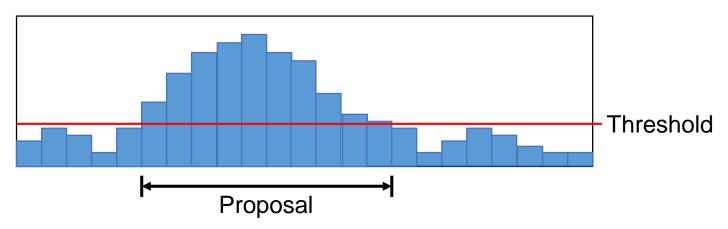
• Final class score can be represented as

$$\boldsymbol{s}_{\text{final}} = \sum_{t=t_s}^{t_e} \frac{\alpha \hat{\boldsymbol{s}}_{t,\text{RGB}}^{c*} + (1-\alpha) \cdot \hat{\boldsymbol{s}}_{t,\text{FLOW}}^{c*}}{t_e - t_s + 1}$$

····TESTING PHASE

Localize Actions

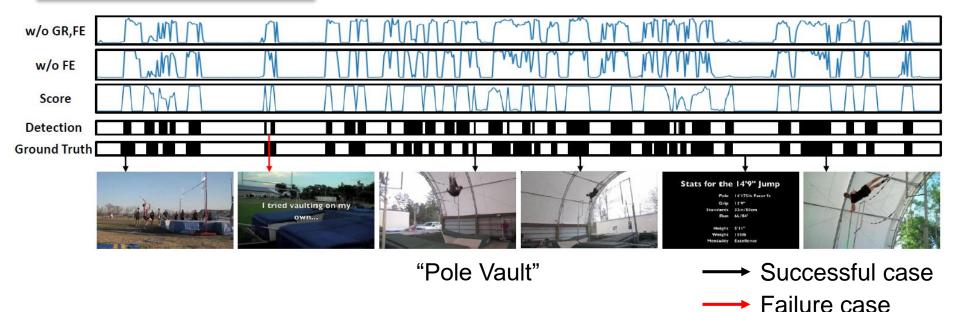
- Employing the two-stream model (RGB and optical flow)
- Each stream is trained individually, and integrated in testing phase
- Temporal proposals are extracted by applying threshold to each stream



• Final class score can be represented as

$$\boldsymbol{s}_{\text{final}} = \sum_{t=t_s}^{t_e} \frac{\alpha \hat{\boldsymbol{s}}_{t,\text{RGB}}^{c*} + (1-\alpha) \cdot \hat{\boldsymbol{s}}_{t,\text{FLOW}}^{c*}}{t_e - t_s + 1}$$

···QUALITATIVE RESULT



- w/o GR, FE: without graph regularization and feature embedding
- w/o FE: without feature embedding (using features from feature extractor)

EXPERIMENTAL RESULTS

···QUANTITATIVE RESULT

THUMOS14

Supervision	Methods	AP@IoU			
		0.3	0.4	0.5	0.7
Full	Yuan <i>et al</i> . [7]	36.5	27.8	17.8	-
	Gao <i>et al</i> . [26]	50.1	41.3	31.0	9.9
	Zhao <i>et al</i> . [9]	51.9	41.0	29.8	10.7
	Wang <i>et al.</i> [10]	28.3	21.1	13.7	-
Weak	Nguyen et al. [11]	35.5	25.8	16.9	4.3
	Shou <i>et al</i> . [12]	35.8	29.0	21.2	5.8
	Paul <i>et al.</i> [13]	40.1	31.1	22.8	7.6
	Ours w/o GR, FE	25.2	17.8	9.6	2.7
	Ours w/o FE	35.4	26.1	16.7	4.2
	Ours	40.2	32.2	21.7	9.2

• w/o GR, FE: without graph regularization and feature embedding

• w/o FE: without feature embedding (using features from feature extractor)

- State-of-the-art performance on various threshold value for IoU
- Comparable performance to fully-supervised approach on higher threshold value

···EXTENSIONS

Limitations

- High computational cost
- Weaknesses on occlusions

Further Work

- Developing the sparse graph regularization with higher performance
- Developing the general module for various applications such as video summarization and spatio-temporal action localization, etc.

Thank you!

Jungin Park, Ph.D. Candidate

Digital Image Media Lab. Yonsei University, Seoul, Korea Tel: +82-2-2123-2879 E-mail: newrun@yonsei.ac.kr