

Dynamic Spatial Predicted Background for Video Surveillance

Abstract

We propose a novel method for video foreground-background separation that models the scene as a superposition of illumination effects. The model predicts each pixel's value using a linear estimator comprised by a few other pixels of the scene. Our method achieves real-time performance using minimal hardware, which is a crucial consideration for embedding such a system on surveillance cameras.

Introduction

- Goal: Given a video clip taken by a static camera, to separate the objects of interest ("Foreground") and irrelevant information ("Background")
- Basic step in video analysis: recognition & tracking
- E.g.: Intelligent visual surveillance, & Human-Machine interaction (Microsoft's Kinect)
- Main challenges: noisy images, shadows, illumination changes (gradual\sudden), dynamic background and computational load

Pixels can be estimated by knowing their and others history: • $\{p_k\}_{k=1}^m$ - set of randomly chosen pixels, referred as "control pixels" • I(j

(2) • =

Yaniv Tocker - ytocker@gmail.com

Yaniv Tocker¹, Rami R. Hagege², Joseph M. Francos¹ ¹Department of Electrical & Computer Engineering, Ben-Gurion University, Be'er-Sheva, Israel ²Lifetbot: http://lifetobot.com/

DSPB – Dynamic Spatial Predicted Background

Physically inspired to handle illumination changes • Pixel correlations depend on number of light sources:

pairs

Fig 1. Pixel correlations & light sources

$$p) = M^{p} \cdot A(1), I(p) \in \mathbb{R}^{1} - \text{Brightness level of pixel } p$$

$$M^{p} \in \mathbb{R}^{1 \times N} - \text{weights of light sources to out}$$

$$A \in \mathbb{R}^{N \times 1} - \text{Light source powers}$$

$$M = M \cdot A, I_{C \to N} \Rightarrow A = M^{-1}I_{C \to M} (2)$$

$$\{p_k\}_{k=1}^m = M \cdot A, \ I_{\{p_k\}_{k=1}^N} \Rightarrow A = M \quad I_{\{p_k\}_{k=1}^m} (2)$$

$$> (1): \ I(p) = M^p \cdot A = M^p M^{-1} I_{\{p_k\}_{k=1}^N} \Rightarrow I(p) = T \cdot I_{\{p_k\}_{k=1}^m}$$

$$> I_t = T^* \cdot I_{\{p_k\}_{k=1}^m} (4)$$

• Problem: inefficient to estimate T^* , so force linear solution Solution: Optimal linear estimator:

$$I_t = \mathbb{E}_{I_t} + Cov_{I_tP} \cdot (Cov_P)^{-1} \cdot (P_t - \mathbb{E}_P) \quad P = I_{\{p_k\}_{k=1}^m}$$

Means & correlations calculated empirically (using past frames) Each pixel is estimated by a set of **5 pixels**

Background Initialization: From the 5th frame!

Background Maintenance: updating the model parameter as the video continues: $\mathbb{E}_x^{i+1} = \alpha \mathbb{E}_x^i + (1 - \alpha) \mathbf{x}^i$

Foreground Detection: $|FG(x, y, t) = |I(x, y, t) - BG(x, y, t)| > 3 \cdot \sigma(x, y, t)$

Problem #1: Control pixels can be occluded or noised

Solution: 3 estimators instead of 1 -> 3 candidates for each pixel -> take median

Problem #2: Correlations are more dominant to a small surrounding area

Solution: - k-means on median image using first 5 frames

- Estimation done separately for each cluster
- BG image obtain by a mosaic of the sub-areas

Evaluation metrics: Precision: $Pr = \frac{TP}{TP+FP}$ **Recall:** $Re = \frac{TP}{TP + FN}$, **Specificity:** $Sp = \frac{TN}{TN + FP}$, **F-measure** = $\frac{2PrRe}{Pr+Re}$, **Frames per second:** fps

- **Tested Methods**: 1) GMM zivkovic et al. ¹ 2) ViBe², 3) RPCA - ALM³
- 5000 frames with 240×320 resolution Ground truth each 15th frame from frame 500 Wallflower Dataset: 7 short videos, unique

challenges

Method	zGMM	ViBe	RPCA	DSPB	Method	zGMM	ViBe	RPCA	DSPB
Pr	0.5466	0.5838	0.7663	0.8263	Pr	0.6230	0.7722	0.7115	0.6981
Re	0.5534	0.3555	0.6836	0.4368	Re	0.5661	0.4051	0.5537	0.4293
Sp	0.9262	0.9426	0.9959	0.9984	Sp	0.7827	0.9680	0.9271	0.9122
\dot{F}	0.4380	0.2819	0.7012	0.5335	F	0.4891	0.4813	0.5903	0.5035
fps	137.29	209.76	0.55	278.25	fps	352.06	466.74	3.64	209.96

 Table 1. LIMU results

 Table 2. Wallflower results

Conclusions

- A novel Hybrid FG-BG separation system
- Involves spatial information (correlations) combined with pixel temporal statistics
- Physically inspired to deal with illumination changes – Gradual or Sudden
- Simple method with low computational requirements – performs in real-time

References

- . Zoran Zivkovic, "Vision modules for a multi sensory bridge monitoring approach," in Proceedings of the 17th International Conference on Pattern Recognition, ICPR, pp. 1051–1054.
- 2. Barnich and M. Van Droogenbroeck, "Vibe: A universal background subtraction algorithm for video sequences," IEEE Transactions on Image Processing, vol. 20, no. 6, pp. 1709– 1724, 2011.
- . D Goldfarb, S Ma, and K Scheinberg, "Fast alternating linearization methods for minimizing the sum of two convex function," Math. Program. Ser. A, 2010.