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Underwater 3D imaging
Active depth sensing techniques

Image courtesy:
1 https://www.terabee.com/time-of-flight-principle

2 A practical underwater 3D-Laserscanner

[McLeod et al. 2013] [Bruno et al. 2011][Maccarone et al. 2015]

Time-of-flight LiDAR Structured Light
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Input image

Underwater 3D imaging
 Passive depth sensing techniques

[Drews et al. (2016), Peng et al. (2015),  Emberton et al. (2018), 
Berman et al. (2018)]

[Wu et al. (2013), Ferreira et al. (2016)]

Image courtesy:
1 Experimentation of structured light and stereo vision for underwater 3D reconstruction
2 Berman et al. (2018)
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Focus 
of this 
paper

Underwater 3D imaging
 Passive depth sensing techniques

Input image Depth map

Computation

Single image

Image courtesy: 1 Berman et al. (2018)
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Single image depth estimation

Supervised methods Unsupervised methods

[Garg et al. (2016), Godard et al. (2017),  Zhan et al. (2018)][Eigen et al. (2014), Kendall et al. (2017), Li et al. (2018)]

CNN CNN

Image courtesy: NYU Depth Dataset V2 (2012) Image courtesy: KITTI stereo dataset (2015)



Single image depth estimation

Supervised methods Unsupervised methods

Needs ground truth depth 
maps

Needs a large stereo dataset

Image courtesy: NYU Depth Dataset V2 (2012) Image courtesy: KITTI stereo dataset (2015)
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Attenuation / haze Color distortion

Challenges

Source: Berman et al. (2018) Source: http://puiqe.eecs.qmul.ac.uk (2018)



Challenges

Reference Depth: 5m Depth: 15m

● And the effect of these factors vary with 
○ scene depth 
○ illumination
○ turbidity

Source: Chiang et al. (2012)



How to build a robust model without 
supervision?



Unsupervised single underwater image
depth estimation (UW-Net) 

● We propose to use unsupervised style-transfer 
○ learn mappings between underwater and 

above-water images
○ propose a network inspired from CycleGAN [Zhu et 

al. 2017]

● Exploit the haze information in underwater images
○ use haze as a cue for depth

Image courtesy: Zhu et al. (2017), NYU Depth Dataset V2 (2012)

Underwater  
dataset

Hazy RGBD  
dataset



Similar image formation models = similar depth-dependent attenuation

Motivation for our method

Image courtesy: Berman et al.  (2018), https://thefella.com



Unsupervised single underwater image
depth estimation (UW-Net) 

Real underwater
image
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Fake underwater
imageGX → Y FY→ X

Real underwater
image

Underwater - cycle
Depth-map 

corresponding to the 
underwater image !



Fake underwater
image

Real above-water RGB-D 
image 

Fake above-water RGB-D 
image GX → YFY→ X

RGBD - cycle



Fake underwater
image

GX → Y FY→ X
Real underwater

image
Fake above-water 

RGB-D image 

Reconstruction loss



How to avoid learning identity mapping?

Fake underwater
image
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GX → Y
Real underwater

image
Fake above-water 

RGB-D image 

Adversarial loss

Fake underwater
image

Real above-water 
RGB-D image 

FY→ X

Underwater half-cycle Above-water half-cycle



Adversarial loss

Discriminator 
network

Derived from: Mao et al. (2016)

GX → Y
FY→ X

Real Fake 
Fake Real 



Adversarial loss

Discriminator 
network

Derived from: Mao et al. (2016)
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Fake Real 



But is the adversarial loss good enough?

Fake underwater
image

GX → Y FY→ X
Real underwater

image
Fake above-water 

RGB-D image 



Structural loss

GX → Y
Real underwater

image
Fake above-water 

RGB-D image Fake underwater
image
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Structural loss

Similarity 
calculation

GX → Y
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Structural loss

Similarity 
calculation

Similarity 
calculation

GX → Y
FY→ X



Overall training loss



Overall training loss

Gradient sparsity prior 
for depth-map



Testing

Testing Phase: Depth-map estimation from single underwater imageGX → YReal underwater
image

Predicted 
depth map



Comparison with traditional methods

0.903 / 0.145

Input underwater image Peng et al. (2015) UW-Net (Ours)

0.786 / 0.545Pearson correlation coeff. (ρ)  / 
Scale Invariant - MSE



Comparison with traditional methods

0.903 / 0.145

Input underwater image Drews et al. (2016) UW-Net (Ours)

0.782 / 0.411ρ  / SI-MSE



Comparison with traditional methods

0.903 / 0.145

Input underwater image Berman et al. (2018) UW-Net (Ours)

0.753 / 0.543ρ  / SI-MSE



0.903 / 0.145

Comparison with deep-learning based method

Input underwater image Godard et al. (2017)
(pre-trained)

UW-Net (Ours)

0.809 / 0.419ρ  / SI-MSE



Input underwater image Godard et al. (2017)
(fine-tuned on underwater dataset)

UW-Net (Ours)

Comparison with deep-learning based method

0.834 / 0.617ρ  / SI-MSE 0.903 / 0.145



Comparison with ground-truth

Input underwater image UW-Net (Ours) Ground-truth

0.903 / 0.145ρ  / SI-MSE



Comparison

Input underwater image UDCP Berman et al. 
Godard et al. without 

fine-tuning
Godard et al. with 

fine-tuning
UW-Net(Ours)

RGT_4480

LFT_4034

0.651 / 0.513 0.650/0.595 0.716/0.406 0.738/0.391 0.791/0.340ρ  / SI-MSE

0.559 / 0.344 0.737/0.326 0.759/0.206 0.594/0.552 0.805/0.188ρ  / SI-MSE



UW-Net on some underwater images



UW-Net on some underwater images



Conclusion

● We tackled the ill-posed problem of depth estimation from a single underwater image



Conclusion

● We tackled the ill-posed problem of depth estimation from a single underwater image
● Our method 

○ is unsupervised and does not require ground-truth depth maps
○ doesn’t require a large stereo dataset

CNN CNN

Single image supervised methods Single image unsupervised methods



Conclusion

● We tackled the ill-posed problem of depth estimation from a single underwater image
● Our method 

○ is unsupervised and does not require ground-truth depth maps
○ doesn’t require a large stereo dataset
○ produces better depth maps for diverse underwater images 
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image
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Conclusion

● We tackled the ill-posed problem of depth estimation from a single underwater image
● Our method 

○ produces better depth maps for diverse underwater images 
○ is unsupervised and does not require ground-truth depth maps
○ doesn’t require a large stereo dataset

Future directions:

The indirect learning method proposed can be used to solve a variety of ill-posed problems
● where obtaining ground-truth is very expensive 
● capturing a large dataset is difficult 
● Similarity between two image domains can be exploited 



Project web-page
http://www.ee.iitm.ac.in/comp_photolab/project-underwater.html

Code available at https://github.com/honeygupta/UW-Net 
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Haze as a cue for Depth

Depth-map obtained with normal color image as aerial input

Input aerial image Input underwater imageInput aerial depth map
Estimated underwater 

depth map



Haze as a cue for Depth

Depth-map obtained with hazy color image as aerial input

Input aerial image Input underwater imageInput aerial depth map
Estimated underwater 

depth map



● Above-water dataset: 
○ D-Hazy dataset
○ 1449 synthetic hazy images created from NYU Depth Dataset
○ Performed bilateral filtering on the depth maps for training.

● Underwater dataset
○ 1343 images collected from internet

Downsampled to 256x256 and randomly cropped 128x128 for training

● Comparison with:
○ Non data-driven: Dark channel prior[6], UDCP [7] 
○ Data-driven: Pretrained Unsupervised monocular depth estimation with left-right consistency 

[12], fine-tuned[12] on underwater stereo dataset (CADDY)

Training details


