Maryam Haghighat, Reji Mathew, and David Taubman, University of New South Wales, Sydney, Australia

The KeyIdea

We propose to decompose multi-view imagery into two additive parts which can be understood as diffuse and specular content. We choose distinct and different sparsifying transforms for the diffuse and specular contents and employ an R-D inspired measure as our optimization cost function to drive the decomposition based solely on compressibility

Problem: separate $\mathrm{x}_{\mathrm{sp}}=\left(x_{0, \mathrm{sp}} \ldots x_{K, \mathrm{sp}}\right)^{t}$ from $\mathrm{x}_{\mathrm{d}}=\left(x_{0, \mathrm{~d}, \ldots} \quad x_{K, \mathrm{~d}}\right)^{t}$ such that total coding cost J tot is minimized
$\left\{\mathrm{x}_{\text {sp }}, \mathrm{x}_{\mathrm{d}}\right\}=\operatorname{argmin} J^{\text {tot }}\left(\mathcal{T}_{\text {sp }} \mathrm{X}_{\text {sp }}, \mathcal{J}_{\mathrm{d}} \mathrm{X}_{\mathrm{d}}\right)$ $\left\{\mathrm{X}_{\mathrm{sp}}, \mathrm{X}_{\mathrm{d}}\right\}$
subject to
$x_{k}=x_{k, \mathrm{~d}}+x_{k, \text { sp }}, k=$ frame number
\mathcal{J}_{d} is an inter plus intra view transform
$\mathcal{T}_{\text {sp }}$ is an intra view only transform
Coding Cost Function $\quad \mathrm{J}^{\text {tot }}=\mathrm{D}^{\text {tot }}+\lambda \mathrm{L}^{\text {tot }}$
$\mathrm{J}^{\text {tot }}=\sum_{s, \boldsymbol{n}} \mathrm{~J}\left(y_{s, \boldsymbol{n}}\right)=\sum_{s, \boldsymbol{n}} \mathrm{D}\left(y_{s, \boldsymbol{n}}\right)+\lambda \mathrm{L}\left(y_{s, \boldsymbol{n}}\right)$
$y_{s, n} \in\left\{\mathcal{J}_{\mathrm{sp}} \mathrm{X}_{\mathrm{sp}}, \mathcal{T}_{\mathrm{d}} \mathrm{X}_{\mathrm{d}}\right\}$
$\mathrm{D}=$ Quantization Distortion
$\mathrm{L}=$ Coded Length

Problem Formulation
$\left\{\mathrm{x}_{\mathrm{sp}}, \mathrm{x}_{\mathrm{d}}\right\}=\operatorname{argmin} \sum_{s, \boldsymbol{n}}\left|\frac{\lambda\left(\frac{1}{a}+L_{s, \mathbf{n}}^{\sigma}\right)}{\sqrt{\lambda /\left(a g_{s, \mathbf{n}}\right)}} y_{s, n}\right|$
$\left\{\mathrm{X}_{\mathrm{sp}}, \mathrm{X}_{\mathrm{d}}\right\}$

Proposed decomposition using lifting-based 5/3 inter-view transform for diffuse content.

To avoid the complexity of warping between views, we solve the decomposition problem in a registered domain and then warp the solution back to the coordinates of the original views.

Results

Whiteboard dataset

Table dataset

Pavilion dataset

\checkmark Much of the specular content is removed form input view sequences.
\checkmark Coding performance is improved in comparison with conventional scalable coding

