When Causal Intervention meets Adversarial Examples and Image Masking

C.-H. Huck Yang*, Y.-C. Liu*, Pin-Yu Chen, Xiaoli Ma, and Yi-Chang James Tsai *equal contribution Georgia Institute of Technology IBM Research, AI Foundation Group

What is the Causality?

- Unidirectional

Related Work - Class-Activation Mapping (CAM)

Zhou et al. "Learning Deep Features for Discriminative Localization," CVPR, 2016

Correlation (CAM) v.s. Causality on DNNs

X (inputs)

how to find a visual causal features on output label?

New DNN Challenge: Adversarial Examples

Source: P.-Y. Chen, IBM Research

Proposed: Directed Causal Graph

Intervention : $do(x'_i)$

 $Effect(x_i \to x_j, Z) = P(x_j | do(x'_i), Z_{X_i}) - P(x_j | Z_{X_i})$

Cat

Contributions

- Deep Autoencoding for calculating causal effect (CE).
- CE is a competitive **index** for understanding DNNs.
- We found that CE holds promises for detecting adversarial examples as it possesses distinct characteristics in the presence of adversarial perturbations.

Method: Deep Autoencoder $L(\theta; x_i) = \lambda_{shallow} \times L_{shallow}(\theta; x_i) + \lambda_{deep} \times L_{deep}(\theta; x_i)$ $+\lambda_{interpretability} \times L_{interpretability}(\theta; x_i)$ Dense Block 1 Dense Block 2 Dense Block 3 Dense Block 4 Z_0 7×7 . Linear $\times 1$ Chest Xray Images 14 × 14, Conv × 32 28 × 28, Conv × 48 56 × 56, Conv × 24 112×112, Conv×12 Deep Reconstruction Loss L_1 : Interpretability Loss Encoder 1 Encoder 2 Freeze

 L_3 :

Harradon et al. "Causal Learning and Explanation of Deep Neural Networks via Autoencoded Activations", 20188

 L_2 : Shallow Reconstruction Loss

Datasets

ChestX-ray14

- contains frontal-view chest X-ray
- 14 different thoracic diseases.

Pneumonia

Fashion-MNIST

- 60k images

ImageNet - 1.2 million images

Results - Causal Effect Mapping (CEM)

Ground Truth

(I) CAM Results

(II) CEM Results

Estimate Causal Effect on Adversarial Signals

Table 1. Expected-CE on CheXNet

Level(L), Node(N)	Z_0	$F_i = PWM$
3,4	4.5076×10^{-3}	7.2356×10^{-7}
6,5	2.843×10^{-3}	1.2154×10^{-5}
6,10	3.1939×10^{-3}	9.0066×10^{-6}
8,5	3.1939×10^{-3}	1.1536×10^{-5}
10,7	1.3775×10^{-2}	-1.1506×10^{-5}

Estimate Causal Effect on Adversarial Signals

Attack Methods:

Fast Gradient Sign Method (FGSM) Jacobian-Based Saliency Map (JBSM) Basic Iterative Method (BIM) Projected gradient descent (PGD)

Table 2. CheXNet $(F_j \text{ on } L = 10, N = 7)$

F_j = Types of Adversarial Attack	Expected-CE
FSGM	-5.6129×10 ⁻⁶
BIM	4.3435×10^{-5}
JBSM	7.7548×10^{-5}
PGD	-3.9605×10^{-6}

Conclusion

A Framework to estimate a causal effect on high dimensional visual data

Evaluate the this numerical causal effect on adversarial example

Saliency visualization as a interpertable method.

Future work:

Relation reasoning, time-series causal analysis, and video detection

Thank You!

Question & Answer

Code Released:

https://github.com/jjaacckkyy63/Causal-Intervention-AE-wAdvImg

yliu3233@gatech.com; huckiyang@gatech.edu

Appendix: Expectation of Causal Effect

 $X_j = x_j$ with all of the evidence Z could be computed as:

$$Effect(x_i \to x_j, Z) = P(x_j | do(x'_i), Z_{X_i}) - P(x_j | Z_{X_i})$$
(1)

The excepted casual effect from **Eqn. 6** in [18] has been defined as:

$$E_{X_i}[Effect(x_i \to x_j, Z)] = \sum_{x_i \in X_i} P(X_i = x_i | Z) \times (1)$$
(2)

$$P(x_i|pa'_i) = \begin{cases} P(x_i|pa_i) & \text{if } F_1 = idle, \\ 0 & \text{if } F_i = do(x'_i) \text{ and } x_i \neq x'_i, \\ 1 & \text{if } F_i = do(x'_i) \text{ and } x_i = x'_i. \end{cases}$$
(3)

$$L(\theta; x_i) = \lambda_{shallow} \times L_{shallow}(\theta; x_i) + \lambda_{deep} \times L_{deep}(\theta; x_i) + \lambda_{interpretability} \times L_{interpretability}(\theta; x_i)$$
(4)

Appendix - NLP

A causal framework for explaining the predictions of black-box sequence-to-sequence models, David Alvarez-Melis, Tommi S. Jaakkola, ACL, 2017

Explanations for biased translations of similar gender-neutral English sentences into French.

Simularity

- Biscuit v.s. Dog (Chihuahua)

Medical Image

- Retinal Images

Source: [2] Yang et al. 2018 Biology Workshop ICML

Medical Image

Fast Gradient Sign Method (FGSM)

"panda" 57.7% confidence

> x – Clean Input Image x^{adv} – Adversarial Image J – Loss Function

 y_{true} – Model Output for x ε – Tunable Parameter

Source: [3] Goodfellow et al. arxiv 2015