

INTRODUCTION

Goal

- Deploy neural networks on resource-constrained systems for vision quality applications without special hardware design
- Minimize Multiply-Accumulate (MAC) and memory bandwidth (BW) without quality-metric drops

Challenge of Vision Quality Applications

• Increased MAC per inference because of large resolution

Application	Network	Resolution	# of GMAC
Classification	MobileNet-v1	224x224	0.6
Low-light photography	SID [1]	1424x2128	1500
Super-resolution	EDSR [2]	1020x1020	560

[1] Learning to see in the dark.

[2] Enhanced deep residual networks for single image super-resolution. Baseline (Single-scale) x2

Solution

• Learning network architecture with performance target by adaptive pruning threshold while keeping quality

NETWORK ARCHITECTURE ANALYSIS

Conv-C Conv-A 0 1 2 3 4 5 0 1 2 3 4 5 Conv-D Conv-B 0 1 2 3 4 5 0 1 2 3 4 5

SID:

MAC/weight are much larger on both top and bottom layers

EDSR:

Output channel of a given layer (Conv-D) and its preceding layer (Conv-B) should be grouped and pruned on residual blocks

ARCHITECTURE-AWARE NETWORK PRUNING FOR VISION QUALITY APPLICATIONS

Wei-Ting Wang, Han-Lin Li, Wei-Shiang Lin, Cheng-Ming Chiang, Yi-Min Tsai MediaTek Inc.

{wei-ting.wang, Han-Lin.Li, Wei-Shiang.Lin, Jimmy.Chiang, Yi-Min.Tsai}@mediatek.com

ARCHITECTURE-AWARE NETWORK PRUNING

Observation

MAC is 5 order of magnitude larger than weight A layer removed can severely degrade the quality A residual block (16-layer-group, Balance Pruned Output Channel 43% MAC) are hard to be pruned

PRUNED SUBJECTIVE QUALITY

SID: Original (Left), Pruned (Right)

Method Enhance MAC Efficiency Keep Layer Depth daptive threshol **Regularization Function** (e.g. Sparsity Imbalance) 3. Prune Weights 4. Re-Train 2. Calculate Thresholds (Magnitude < Threshold) Conv1 Threshold Conv2 Conv2 Weights Threshold Conv3 Conv3 Conv3 Weights Threshold _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ **Iterative Pruning**

EDSR: Original (Left, Mid), Pruned (Right)

Quality Metric Guarantee

PRUNED COMPLEXITY AND QUALITY-METRIC

Method
Α
Β
С
D

Table 1. Detailed results. BW, considering only convolutional layers, consists of both weights and activations. Each weight and activation is represented with 4-byte floating-point numerical precision.

Network	Solution		f MAC (10 ⁹)		Weights (10 ³)		ctivations (10^6)		BW /Inference)	Validation PSNR	Validation SSIM
SID	Original	560	(100%)	7757	(100%)	1915	(100%)	1922	(100%)	28.54	0.767
SID	Method-A	458	(82%)	6918	(89%)	1632	(85%)	1639	(85%)	28.54	0.768
SID	Method-B	354	(63%)	5275	(68%)	1485	(78%)	1491	(78%)	28.54	0.771
SID	Method-C	270	(48%)	5584	(72%)	1219	(64%)	1225	(64%)	28.54	0.769
SID	Method-D	236	(42%)	4241	(55%)	1169	(61%)	1173	(61%)	28.55	0.768
EDSR	Original	1428	(100%)	1367	(100%)	5076	(100%)	5077	(100%)	34.42	0.942
EDSR	Method-A	1085	(76%)	1037	(76%)	4481	(88%)	4481	(88%)	34.43	0.942
EDSR	Method-B	1085	(76%)	1037	(76%)	4481	(88%)	4481	(88%)	34.43	0.942
EDSR	Method-C	1085	(76%)	1037	(76%)	4481	(88%)	4481	(88%)	34.43	0.942
EDSR	Method-D	897	(63%)	857	(63%)	4083	(80%)	4083	(80%)	34.42	0.942

PRUNED NETWORK ARCHITECTURE ANALYSIS

ΜΕΟΙΛΤΕΚ

• MAC of SID and EDSR are reduced by 58% and 37% BW of convolutional layer are reduced by 20% to 40% Without degradation of PSNR, SSIM and subjective quality

-	• •
Descri	ntion

Iterative Prune

A + Keep Layer Depth

B + Enhance MAC Efficiency

C + Balance Pruned Output Channel

• Pruned output channel per layer: SID (top), EDSR (bottom)