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Motivation

e State-of-the-art self-driving cars are based on Sensor Fusion methods

o  Stereo (multi RGB images), Depth sensors, LIDAR systems
o Higher cost of production, more susceptible to hardware malfunctions, non-ergonomic
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e Humans drive using only visual cues - autonomous driving using vision alone
o RGB cameras are ubiquitous, less expensive, and have a significantly higher pixel resolution

e 2D object detection from a single RGB image (monocular) is already solved
e Monocular 3D perception remains a very difficult challenge



Purpose

Hybrid 3D Object Detection model combining deep learning with geometry
Monocular object detection - using only one RGB camera on the car
No pretrained network for Depth Estimation

Detection - 3D Bounding Box reconstructed from:
a. 2D Bounding Box
b. 3D angle orientation around the Oy axis
c. 3D object dimensions - height, width, length
d. 3D object translation ( 3D center coordinates) - (X, y ,z)




Contributions

e Modified Faster R-CNN, 3D object detection architecture, estimating
o 2D location, orientation and 3D object properties (dimensions)
e Mathematical system of equations solved using least squares, estimating

o 3D object translation, based-en previous values and camera projection matrix
o Enforcement of the 3D to perfectly fit it's 2D projection

e [ully connected refinement network - ShiftNet
o Learns the error dependency between the first 2 stages and corrects the final 3D translation

e A novel Volume Displacement Loss (VDL)

o Differentiable alternative to 3D loU metric
o Used for training ShiftNet by approximating the maximization of 3D loU



Architecture Main Stages

1. 2D Object Detection and 3D Intrinsics Estimation

a.  Faster R-CNN architecture composed of 4 prediction heads

b, Angle Regression Head - predicting local object angle

c. 3D Dimension Regression Head - predicting 3D object height, width, length
2. Estimating the 3D Object Translation

a. - Local to global orientation

b, Inverse 2D to 3D geometric mapping problem
3. Refining the 3D Object Translation

a.  Shift Network

b, Volume Displacement Loss (VDL)
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Architecture

2D Object Detection and 3D Intrinsics Estimation

Input - Only one RGB image (monocular)
Extract and score 2D region proposals by means of 2D anchors

2D ROl pooling for feature cropping and feature refinement

Multiclass classification and box refinement, per class, only for top scored detections
Angle and 3D dimensions regression
Output - class, 2D bounding box, local orientation angle, 3D dimensions
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Architecture Angle Disentanglement

A crucial assumption is made
o Objects are placed on the ground plane
o  Only rotation around Oy axis is necessary

An object's orientation angle is multifaceted
o @, - observed object’s local orientation angle, around Oy axis
o @,y - the ray from the camera origin to the center of the object
o O gy - realobject's global orientation angle around Oy axis

= Ry (global: @ = @L— GRY
Faster R-CNN works with region proposal feature crops

o Only the observed local angle GL can be predicted



Architecture

Angle Regression Head

Due to the periodicity of an angle's value ar, regression requires a new encoding

o Sine and Cosine encoding sin,, and ¢c0s,,

0 ; —_—2 ¢
o Enforcement constraint used to promote angle consistency sin,, A C/QS(TLZ =

For each object, C different angles are predicted, one for each class

The loss is computed only for the winning class:

e
Lo, = ||sinag,, = sing,||2 + || cosar,, — €0Sq, ||2 + Lent
2
Lent = |1 = (g, + @05, )]l

At inference time, the local orientation angle is given by:

/\/\

ap = atan2(sin,, , €os,, ).

\

[/] \

cos(0),sin(0))

! sin )

cos(f)



Architecture 3D Dimension Regression Head

e Inline with Faster R-CNN angle regression, the 3D object height, width and length are

also regressed in C triplets, one per class d = [h, w, ]
o Because of low variance of the dimensions, we use predefined mean dimensions per class, that

act as anchors d. = | k.70, 1
o  Network predicts the logarithmic scale offsets to the mean dimensions, similar to bounding box
regression in Faster R-CNN-(tog space) Ad. = [Ah, Aw, Al]

o The network will predict a zero-centered distribution around the mean dimension:
Ad.= | Infng Int |

e Lossis computed forthe winning class using L2 Loss
e Atinference time, the predicted dimension is given by:

d = [eAh X he, €2V X W,, e x I




Architecture Estimating the 3D Object Translation

e Compute the global angle using the predicted local angle and Thetaray ag = ap — 6,4
e Having the Stage 1 predictions:
o Bounding box b2p = [Zmin; Ymin, Tmaz, Ymaz]
o Globalangle ag
o Dimensionsd = [h, w,l]
o Camera projection matrix P
o Estimate the 3D translation vector ¢ = [t,,#,¢]Tas a closed form, least squares solution
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Architecture 2D to 3D Lifting

e 3D bounding box reconstruction X - PO 4. '> .
o Camera origin centered X3p, B e
. . w < »
o  Shaped by dimensions L

o Rotated with the global angle about Oy
e Final 3D/2D corner points are given by:

X3p = Ry (aG)XBDO +t 2D Bounding Box 2D Bounding Box

XopD| X3D
Rkt
e 3D BBox enforcement to fit 2D BBox / /// | j

VERTICAL SIDE FITTING HORIZONTAL SIDE FITTING

o Each vertical 2D edge - 4 vertical 3D edges vy, ; __ El ________________
o Each horizontal 2D edge - 4 3D corners

o 64 possible different configurations 3D Bounding Box 3D Bounding Box




Architecture 2D to 3D Lifting

Each 2D BBox side fixed to a 3D BBox point | O ol '> R
o Unknown translation vector t' L L v
o Foreach 2D side we form the system W L ’
p lé Ry(acl)X;sD,,] ltll] —x {;jglfe} VERTICAL SIDE FITTING HORIZONTAL SIDE FITTING
b BYi e 2D Bounding Box 2D Bounding Box

Taking all the 2D sides into consideration
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Architecture Refining the 3D Object
Translation
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e Stage 2 estimated translation t' = [tz . ;]| is susceptible to noise
o Accuracy drop from 80% to 14% 3D loU in the presence of noise from Stage 1
e ShiftNet - network that produces a refined translation t* = [t",, ¢/, ¢
o  Fully connected architecture, 3 layers of 1024 neurons
o Purpose - learns how to correct the Stage 2 translation using the Faster R-CNN error distribution
o Input - Stage 1 2D BBox, local and global angles, Stage 2 translation and the projection matrix
o Output - final refined translation




Architecture

Different 3D IoU
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Volume Displacement Loss

3D loU does not define’a distance in metric space

Loss function to approximate 3D loU
o L1, L2 loss only used for translation error

Translation error alone does not suffice
o Does not take into consideration shape variation
Two 3D boxes on a sphere around the 3D GT box
o Same translation error
o Distinct 3D loUvalues
The 3D loU differences are huge and and range
between 0 and 50%



Architecture Volume Displacement Loss

e Volume Displacement Loss (VDL) O ¥olume Dispalecement
o  Approximates 3D loU metric GT 3D Proposed 3D
. . : Bounding Box Bounding Box
o Represents a distance in metric space Oy Volume Dispalecement
o Fully differentiable , : )
: . ’ : : Proposed 3D
o Dimensions dependent | . ; ; Bounding Box
e The quantity of volume displaced by b % :
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Training Procedure 3D OD Training

Dataset. KITTI 3D Object Detection : train/val Chen split
Stage 1 Setup
e Faster R-CNN architecture, ResNet-101 backbone, COCO pretrained
e SGD, 30 epochs, momentum 0.9, learning rate 3 x 10 4 and 2 decays of 0.1at Y5, %

e | 0ss weighting strategy: the uncertainty of a task
o 1.0, 2.0, 50 and 100.0 for the classification, localization, orientation and dimension regression

ShiftNet Setup (Stage 3 refinement)
e Pretrain using Stage 1 ground-truth and Stage 2 3D translation estimate
o Fine-tune on real estimates produced by Stage 1

e 6.6 AP Improvement (13.8 vs 7.2 car AP@0.7 3D IOU) on real image estimates from
Stage 1

e 3D Synthetic data augmentation improves the AP (0.5 3D loU) for the classes with
fewer examples (22% vs. 20% for Pedestrian, 73% vs. 47% for Cyclist) for GT input in
Stage 1 and 3D translation estimate in Stage 2



Results Stage 3 Refinement

Fig. 2: Stage 2 (top) and Stage 3 (bottom) results comparison. Note that Stage 3 improves the 3D estimation due to its noise robustness.
Turquoise boxes denote objects with the same orientation and magenta color the opposite orientation. Best viewed in color.

® Top row: Projective system fitting (prone to error)
e ShiftNet refinement (error adaptive)
o Improves occluded objects (most notable)



Results

e [he model was trained on the
e Evaluation was done both on the set and KITTI 3D Detection Test set
e The evaluation metric used is 3D loU and Birds Eye View loU
e For monocular-only based methods, we obtained state of the art results (at that time)
APs3p (%) APpgv (%)
Method Setup Class Easy Moderate Hard Easy Moderate Hard
Mono3D [ 1] Mono 253/ - 231/ - 231/ - 522 - 519/ - 4,13/ -
DeepBox3D [10] Mono -/ 585 -/ 410 -/ 384 -/ 999 = o TIL -/ 530
OFT-Net [20] Mono Cir 4.07/ 2.50 3.27: 328 3.29/ 2.27 11.06/ 9.50 8.79/ 7.99 891/ 7.51
MLF-Mono [23]* Mono+PD (0U>0.7) 10.53./ 7.85 5.69/ 5.39 5.39/ 4.73 22.03/19.20 13:63./.12:17 11.60/10.89
ROI-10D [15]* Mono+PD S 10.25/12.30 6.39/10.30 6.18/ 9.39 14.76 / 16.77 9.55/12.40 1571 11:39
Linear System (Ours) Mono 7.24/ 6.80 598/ 4.14 5.54/ 3.50 14.74 / 11.75 1248/ 8.34 11.22/ 6.80
ShiftNet (Ours) Mono 13.84/ 8.13* | 11.29/ 5.22 11.08/ 4.78* | 18.61%/13.32 14.71/ 8,49 13.57/ 6.40
OFT-Net [20] Mono Ped = ol el -/ 1.06 -/ 1.06 -/ 1.55 -/ 193 - [ 1.65
Linear System (Ours) Mono (IoU>65) 1.51./°-0.53 1517} 0:53 .51/ 053 1.51/ 0.53 1.51/ 0.53 1.517/ 0.53
ShiftNet (Ours) Mono = 7.55/13.36 6.80/10.59 6.12/10.59 8.24/13.81 7.50/11.44 6.73/10.76
OFT-Net [20] Mono G -/ 043 -/ 043 -/ 043 -/ 043 -/ 0.79 -/ 043
Linear System (Ours) Mono (IoU);é 5) 1.38/ 0.73 090/ 0.43 0.90/ 043 142/ 0.53 090/ 0.53 0.90/ 0.53
ShiftNet (Ours) Mono = 1.85/ 3.03 1.08/ 3.03 1.10/ 3.03 230/ 3.58 2.00/ 3.03 2.11/ 3.03

Table 1: 3D object detection results on KITTI Chen/Test splits. We report AP3p (%) and APggv (%) for Car, Pedestrian and Cyclist classes.
Methods that use a pre-trained monocular depth network (Mono+PD) are in blue. We denote with bold black monocular state of the art, bold
black* cases when we outperform one Mono+PD method and bold blue, cases where we outperform all Mono+PD. Best viewed in color.



http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
https://xiaozhichen.github.io/

Demo (KITTI)



http://www.youtube.com/watch?v=5MieYfknEyQ

Conclusion

e With a much lighter architecture and without a pre-trained depth network we
obtained state of the art results at the time of paper submission
e Onthe Car class, but also on the Pedestrian and Cyclist classes, we outperformed

the main monocular image 3D detectors at paper submission time on all difficulty
levels on KITTI val, test splits,

Thank you!


http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=07dd1309a3b54588520ec430327b1aef1b5a18e4

