

Problem Definition

Given a set of images with multiple views, Multi-View Clustering (MVC) is to partition the image set into clusters by exploiting the complementary information among the views.

Motivation

Previous subspace learning based MVC clustering methods suffer two limitations:

- Affinity matrix learning and cluster indicator prediction are accomplished separately, resulting that they are hardly optimal for.
- The desired discrete clustering indicator is approximated by continuous value for the convenience in model solving, which degrades MVC performance.

Contributions

An unified model for multi-view image clustering that jointly learn the self-representation, continue cluster indicator and discrete cluster indicator.

JOINT LEARNING OF SELF-REPRESENTATION AND INDICATOR FOR MULTI-VIEW IMAGE CLUSTERING Songsong Wu^{1,5}, Zhiqiang Lu¹, Hao Tang², Yan Yan³, Songhao Zhu¹, Xiao-Yuan Jing⁴, Zuoyong Li⁵ ¹Nanjing University of Posts and Telecommunications ²University of Trento ³Texas State University ⁴ Wuhan University ⁵ Minjiang University

Approach

Model

self-representation in each view

 $\arg\min_{Z_v, E_v, F, P, Q} \sum_{v=1}^{V} \left\{ \frac{\|X_v - X_v Z_v - E_v\|_F^2 + \lambda_1 \|E_v\|_1}{+\lambda_2 Tr(P^T L_v P) + \lambda_3 \|F - PQ\|_F^2} \right\}$

continuous indicator

Solution $\underset{Z}{\arg \min} ||X -$ Update Z s.t. $Z_{ii} =$ $\arg \min ||(X -$ Update E Update P $\arg \min \lambda_3 || F - I$ Update Q Update F

s.t. $Z_v(i, i) = 0, P^T P = I, Q^T Q = I, F \in I_{dx}$

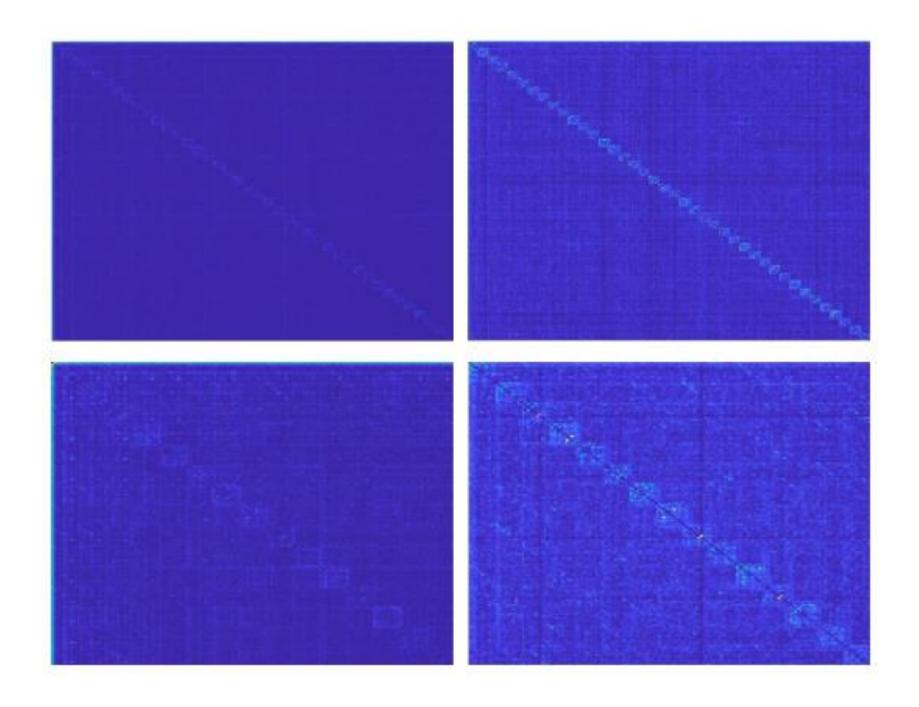
continuous indicator to discrete indicators

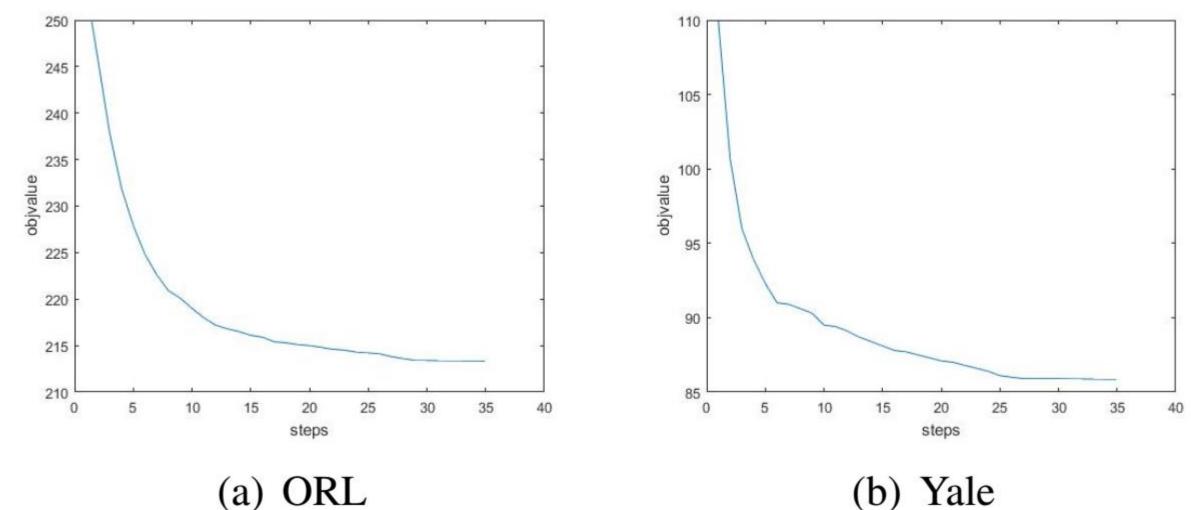
$$-XZ - E||_F^2 + \lambda_2 Tr(P^T LP)$$
$$= 0$$

$$-XZ)_i - E_i ||_F^2 + \lambda_1 ||E_i||_1$$

 $\arg\min\lambda_2 Tr(P^T L P) + \lambda_3 ||F - PQ||_F^2, \text{ s.t.} P^T P = I$

$$PQ||_F^2, \quad \text{s.t. } Q^TQ = I$$


arg max $\lambda_3 Tr(F^T P Q)$, s.t. $F \in I_{dx}$


Results

Table

	Method	NMI	ACC	ARI	F	Р	Re
single	SPCbest	0.884(0.002)	0.726(0.025)	0.655(0.005)	0.664(0.005)	0.610(0.006)	0.728(0.005)
single	SSCbest	0.893(0.007)	0.765(0.008)	0.694(0.013)	0.682(0.012)	0.673(0.007)	0.764(0.005)
single	S3Cbest	0.902(0.012)	0.784(0.009)	0.705(0.019)	0.698(0.018)	0.688(0.012)	0.791(0.011)
Multiple	Min-Dis	0.876(0.002)	0.748(0.051)	0.654(0.004)	0.663(0.004)	0.615(0.004)	0.718(0.003)
Multiple	RMSC	0.872(0.012)	0.723(0.025)	0.644(0.029)	0.654(0.028)	0.607(0.033)	0.709(0.027)
Multiple	ConReg	0.883(0.003)	0.734(0.031)	0.668(0.032)	0.676(0.035)	0.628(0.041)	0.731(0.030)
Multiple	LTMSC	0.930(0.002)	0.795(0.007)	0.750(0.003)	0.768(0.007)	0.766(0.009)	0.837(0.004)
Multiple	DiMSC	0.940(0.003)	0.838(0.001)	0.802(0.000)	0.807(0.003)	0.764(0.012)	0.856(0.004)
Multiple	ECMSC	0.947(0.009)	0.854(0.011)	0.810(0.012)	0.821(0.015)	0.783(0.008)	0.859(0.012)
Multiple	CSMSC	0.942(0.005)	0.868(0.012)	0.827(0.002)	0.831(0.001)	0.860(0.002)	0.804(0.003)
Proposed	Ours	0.943(0.005)	0.886(0.016)	0.831(0.019)	0.835(0.019)	0.804(0.023)	0.868(0.018)

MethodNMIACCARIFPResingleSPCbest0.654(0.009)0.616(0.030)0.440(0.011)0.475(0.011)0.457(0.011)0.495(0.010)singleSSCbest0.671(0.011)0.627(0.000)0.475(0.004)0.517(0.007)0.509(0.003)0.547(0.004)singleS3Cbest0.678(0.013)0.634(0.016)0.471(0.005)0.508(0.012)0.512(0.005)0.568(0.025)MultipleMin-Dis0.645(0.005)0.615(0.043)0.433(0.006)0.470(0.006)0.446(0.005)0.496(0.006)MultipleRMSC0.684(0.033)0.642(0.036)0.485(0.046)0.517(0.043)0.500(0.043)0.535(0.044)MultipleConReg0.673(0.023)0.611(0.035)0.466(0.032)0.501(0.030)0.476(0.032)0.532(0.029)MultipleLTMSC0.765(0.008)0.741(0.002)0.570(0.004)0.598(0.006)0.569(0.004)0.629(0.005)MultipleDiMSC0.727(0.010)0.709(0.003)0.535(0.011)0.564(0.002)0.543(0.001)0.586(0.003)MultipleECMSC0.773(0.010)0.771(0.014)0.590(0.014)0.617(0.012)0.584(0.013)0.653(0.013)MultipleCSMSC0.784(0.001)0.752(0.001)0.615(0.005)0.640(0.004)0.673(0.002)0.610(0.006)									
singleSSCbest0.671(0.011)0.627(0.000)0.475(0.004)0.517(0.007)0.509(0.003)0.547(0.004)singleS3Cbest0.678(0.013)0.634(0.016)0.471(0.005)0.508(0.012)0.512(0.005)0.568(0.025)MultipleMin-Dis0.645(0.005)0.615(0.043)0.433(0.006)0.470(0.006)0.446(0.005)0.496(0.006)MultipleRMSC0.684(0.033)0.642(0.036)0.485(0.046)0.517(0.043)0.500(0.043)0.535(0.044)MultipleConReg0.673(0.023)0.611(0.035)0.466(0.032)0.501(0.030)0.476(0.032)0.532(0.029)MultipleLTMSC0.765(0.008)0.741(0.002)0.570(0.004)0.598(0.006)0.569(0.004)0.629(0.005)MultipleDiMSC0.727(0.010)0.709(0.003)0.535(0.001)0.564(0.002)0.543(0.001)0.586(0.003)MultipleECMSC0.773(0.010)0.771(0.014)0.590(0.014)0.617(0.012)0.584(0.013)0.653(0.013)		Method	NMI	ACC	ARI	F	Р	Re	
singleS3Cbest0.678(0.013)0.634(0.016)0.471(0.005)0.508(0.012)0.512(0.005)0.568(0.025)MultipleMin-Dis0.645(0.005)0.615(0.043)0.433(0.006)0.470(0.006)0.446(0.005)0.496(0.006)MultipleRMSC0.684(0.033)0.642(0.036)0.485(0.046)0.517(0.043)0.500(0.043)0.535(0.044)MultipleConReg0.673(0.023)0.611(0.035)0.466(0.032)0.501(0.030)0.476(0.032)0.532(0.029)MultipleLTMSC0.765(0.008)0.741(0.002)0.570(0.004)0.598(0.006)0.569(0.004)0.629(0.005)MultipleDiMSC0.727(0.010)0.709(0.003)0.535(0.001)0.564(0.002)0.543(0.001)0.586(0.003)MultipleECMSC0.773(0.010)0.771(0.014)0.590(0.014)0.617(0.012)0.584(0.013)0.653(0.013)	single	SPCbest	0.654(0.009)	0.616(0.030)	0.440(0.011)	0.475(0.011)	0.457(0.011)	0.495(0.010)	
MultipleMin-Dis0.645(0.005)0.615(0.043)0.433(0.006)0.470(0.006)0.446(0.005)0.496(0.006)MultipleRMSC0.684(0.033)0.642(0.036)0.485(0.046)0.517(0.043)0.500(0.043)0.535(0.044)MultipleConReg0.673(0.023)0.611(0.035)0.466(0.032)0.501(0.030)0.476(0.032)0.532(0.029)MultipleLTMSC0.765(0.008)0.741(0.002)0.570(0.004)0.598(0.006)0.569(0.004)0.629(0.005)MultipleDiMSC0.727(0.010)0.709(0.003)0.535(0.001)0.564(0.002)0.543(0.001)0.586(0.003)MultipleECMSC0.773(0.010)0.771(0.014)0.590(0.014)0.617(0.012)0.584(0.013)0.653(0.013)	single	SSCbest	0.671(0.011)	0.627(0.000)	0.475(0.004)	0.517(0.007)	0.509(0.003)	0.547(0.004)	
MultipleRMSC0.684(0.033)0.642(0.036)0.485(0.046)0.517(0.043)0.500(0.043)0.535(0.044)MultipleConReg0.673(0.023)0.611(0.035)0.466(0.032)0.501(0.030)0.476(0.032)0.532(0.029)MultipleLTMSC0.765(0.008)0.741(0.002)0.570(0.004)0.598(0.006)0.569(0.004)0.629(0.005)MultipleDiMSC0.727(0.010)0.709(0.003)0.535(0.001)0.564(0.002)0.543(0.001)0.586(0.003)MultipleECMSC0.773(0.010)0.771(0.014)0.590(0.014)0.617(0.012)0.584(0.013)0.653(0.013)	single	S3Cbest	0.678(0.013)	0.634(0.016)	0.471(0.005)	0.508(0.012)	0.512(0.005)	0.568(0.025)	
Multiple ConReg 0.673(0.023) 0.611(0.035) 0.466(0.032) 0.501(0.030) 0.476(0.032) 0.532(0.029) Multiple LTMSC 0.765(0.008) 0.741(0.002) 0.570(0.004) 0.598(0.006) 0.569(0.004) 0.629(0.005) Multiple DiMSC 0.727(0.010) 0.709(0.003) 0.535(0.001) 0.564(0.002) 0.543(0.001) 0.586(0.003) Multiple ECMSC 0.773(0.010) 0.771(0.014) 0.590(0.014) 0.617(0.012) 0.584(0.013) 0.653(0.013)	Multiple	Min-Dis	0.645(0.005)	0.615(0.043)	0.433(0.006)	0.470(0.006)	0.446(0.005)	0.496(0.006)	
Multiple LTMSC 0.765(0.008) 0.741(0.002) 0.570(0.004) 0.598(0.006) 0.569(0.004) 0.629(0.005) Multiple DiMSC 0.727(0.010) 0.709(0.003) 0.535(0.001) 0.564(0.002) 0.543(0.001) 0.586(0.003) Multiple ECMSC 0.773(0.010) 0.771(0.014) 0.590(0.014) 0.617(0.012) 0.584(0.013) 0.653(0.013)	Multiple	RMSC	0.684(0.033)	0.642(0.036)	0.485(0.046)	0.517(0.043)	0.500(0.043)	0.535(0.044)	
Multiple DiMSC 0.727(0.010) 0.709(0.003) 0.535(0.001) 0.564(0.002) 0.543(0.001) 0.586(0.003) Multiple ECMSC 0.773(0.010) 0.771(0.014) 0.590(0.014) 0.617(0.012) 0.584(0.013) 0.653(0.013)	Multiple	ConReg	0.673(0.023)	0.611(0.035)	0.466(0.032)	0.501(0.030)	0.476(0.032)	0.532(0.029)	
Multiple ECMSC 0.773(0.010) 0.771(0.014) 0.590(0.014) 0.617(0.012) 0.584(0.013) 0.653(0.013)	Multiple	LTMSC	0.765(0.008)	0.741(0.002)	0.570(0.004)	0.598(0.006)	0.569(0.004)	0.629(0.005)	
	Multiple	DiMSC	0.727(0.010)	0.709(0.003)	0.535(0.001)	0.564(0.002)	0.543(0.001)	0.586(0.003)	
Multiple CSMSC 0.784(0.001) 0.752(0.001) 0.615(0.005) 0.640(0.004) 0.673(0.002) 0.610(0.006)	Multiple	ECMSC	0.773(0.010)	0.771(0.014)	0.590(0.014)	0.617(0.012)	0.584(0.013)	0.653(0.013)	
	Multiple	CSMSC	0.784(0.001)	0.752(0.001)	0.615(0.005)	0.640(0.004)	0.673(0.002)	0.610(0.006)	
Proposed Ours 0.782(0.005) 0.792(0.026) 0.620(0.008) 0.644(0.007) 0.616(0.009) 0.661(0.006)	Proposed	Ours	0.782(0.005)	0.792(0.026)	0.620(0.008)	0.644(0.007)	0.616(0.009)	0.661(0.006)	

le	1:	Clustering	performances	on ORL	dataset	(meanstandard	deviation).
		CIGOCOLLID	periormanees			(meansumen a	- actineton /	ł

Table 2: Clustering performances on ORL dataset (meanstandard deviation).

Fig. 1: Affinity matrix visualization on ORL (top) and Yale (bottom). From left to right: The affinity without matrix joint learning and the affinity matrix of our method.

(b) Yale Fig. 2: Convergence curve of our method on ORL and Yale.