IDENTIFICATION OF BUILDINGS IN STREET IMAGES USING MAP INFORMATION Masanori Ogawa, Kiyoharu Aizawa The University of Tokyo

Goal

Building region identification in a street image for embedding geographic information

Our Approach

- Given a GPS-based camera pose and a 2D map with building outlines
- Improve the camera pose by using a depth map estimated from the image and the depth information taken from the map
- Project buildings on the map onto the image using the improved camera pose

Related Works

Camera pose refinement/estimation methods using 2D map (Cham et al. [1], Chu et al. [2], Yuan et al. [3]) are based on vertical lines of building corners in the image.

2. Depth estimation of an image

Semantic segmentation is used for building mask creation. A horizontal 1D building depth sequence is obtained by using the mask and the estimated depth.

Camera pose refinement 3.

The distance between depth sequences are calculated while ignoring where buildings may be covered in the image. The camera pose is searched to minimize the distance.

Building map projection 4.

Buildings on the 2D map are projected and masked with the above building mask.

Experiment

Target Images: 80 images of 3 areas (Oshima, Bunkyo, Shinjuku in Japan) via GSV API **2D map:** GEOSPACE of NTT Space Information Inc. **Used methods:** Monodepth [4] for depth estimation, DeepLab v3+ [5] for building mask **Camera pose candidates:**

- $p = p_0 + (x, y)$
- Focusing on positions that are noisy in the measurement

Ground truth (GT) preparation:

- GT camera poses are annotated so that the projection results match the images. GT building identifier maps are obtained by masking the projection results. **Metrics:** Accuracy of building identifiers in the building mask (%)

Evaluation

Method	Oshima	Bunkyo	Shi
Initial (GSV)	77.9	76.9	
Depth-based (Ours)	80.7	81.9	
Corner-based (modified [3])	79.6	73.5	
Combined (Ours)	83.0	80.0	

*Combined: using corner and depth

The building identification accuracy was improved from the results of the initial GSV camera poses in all areas by approximately 5–7%.

[1] T. Cham et al. "Estimating camera pose from a single urban ground-view omnidirectional image and a 2d building outline map," in CVPR. IEEE, 2010. [2] H. Chu et al. "Gps refinement and camera orientation estimation from a single image and a 2d map," in CVPR Workshops. IEEE, 2014. [3] J. Yuan and A. M Cheriyadat "Combining maps and street level images for building height and facade estimation," in SIGSPATIAL Workshop. ACM, 2016. [4] C. Godard et al. "Unsupervised monocular depth estimation with left-right consistency," in CVPR. IEEE, 2017. [5] L. Chen et al. "Encoder-decoder with atrous separable convolution for semantic image segmentation," in ECCV. Springer, 2018.

x, *y*∈[−3m, 3m] per 0.1m

