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Introduction

Context
I Video compression is at the key position in ensuring visual quality and maintaining compatibility with the

transmission bandwidth.
I New standardised video coding algorithms have been initiated including MPEG ’s VVC [Bross et al.,

2019] and AOM’s AV1 [AOM, 2019].
I Machine learning has started to play a more important role in video coding [Yeh et al., 2018; Liu et al.,

2018], although it still remains an underdeveloped research area.
I Resolution re-sampling has also been employed in video coding but only for spatial and temporal

resolutions [Ma et al., 2012; Afonso et al., 2019; Li et al., 2018].

The Summary of Contributions

I The first CNN based effective bit depth adaptation approach (EBDA-CNN) for video compression.
I It achieves consistent bit rate savings over HEVC HM for content at various resolutions.
I An early version of this work was contributed by the University of Bristol (JVET-J0031) [Bull et al., 2018] to

the JVET “Call for proposals” for Versatile Video Coding (VVC) [Segall et al., 2017].
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The Proposed EBDA Video Coding Framework
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I Coding bit depth (CBD) is conventionally used to describe pixel bit depth in video coding and is defined
as InternalBitDepth in HEVC HM codecs (10 bit in this paper).

I Effective bit depth (EBD): this is the actual bit depth used to represent the video content, which is lower
than or equals CBD in the proposed approach (9 bit or 10 bit in this paper).

I It reduces the effective bit depth of an input video before encoding, and reconstructs the original bit depth
at the decoder.

I A fixed QP offset of -6 is applied on the initial base QP value when adaptation is enabled to obtain similar
bit rates with full EBD coding (without adaptation).

I A modified CNN was employed at the decoder for full bit depth reconstruction.
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The Employed CNN Architecture
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I The proposed CNN architecture is a modified from SRResNet [Ledig and , 2017] – the generator of
SRGAN that was developed for super-resolution.

I Batch normalisation (BN) layers have not been used here, as they were reported to decrease image
feature variability and influence overall performance [Lim et al., 2017].

I The loss function employed for training the network is `1 loss rather than `2 based on the results reported
in [Johnson et al., 2016].

1



The CNN Training and Evaluation

I Eighty 10 bit video sequences at various spatial resolutions were used for training the CNN, each of
which was converted to 9 bit and compressed by HEVC HM 16.20 using four initial base QP values (22,
27, 32 and 37).

I Compressed and corresponding original frames from each QP group were randomly selected and split
into 96×96 pixel blocks. This results in 15,000 pairs of input/target image blocks for each group.

I The CNN was built and trained using Tensorflow (1.8.0) [Martı́n , 2015] using the following parameters:
Adam optimisation [Kingma and Ba, 2015], batch size of 16, learning rate of 10−4, weight decay of 0.1 and
200 epochs.

I This results in four CNN models for different QP values in evaluation:

CNNs =


model1, if QPbase ≤ 24.5
model2, if 24.5 < QPbase ≤ 29.5
model3, if 29.5 < QPbase ≤ 34.5
model4, if QPbase ≥ 34.5

(1)

I In the evaluation phase, each frame is also split into 96 × 96 overlapping blocks, with an overlap size of 4.
I The full EBD blocks produced by the CNN (output) are then aggregated in the same way to form a final

reconstruction frame.
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Algorithm Evaluation Configuration

I The proposed approach was integrated into HEVC HM 16.20, and was evaluated on JVET Common Test
Conditions [Bossen et al., 2019] using the Random Access configuration (Main10 profile).

I All the test sequences are from JVET CTC SDR video class A1, A2, B, C and D, different from those
used in CNN training.

I Results for EBD up-sampling with bit shifting were also generated for additional benchmarking.
I All the results are based on Bjøntegaard Delta (BD) measurements [Bjøntegaard, 2001] over all frames

using PSNR (Y channel only).
I Both encoding and decoding were executed on a shared cluster, BlueCrystal Phase 4 based in the

University of Bristol.
I The encoding jobs were run on nodes with 14 core 2.4 GHz Intel E5-2680 v4 (Broadwell) CPUs with

128GB of RAM.
I The decoding jobs were run on GPU nodes with an additional graphic card NVIDIA P100.
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Compression Results and Complexity

Class-Sequence EBDA-CNN EBDA-w/o CNN

BD-Rate BD-PSNR BD-Rate BD-PSNR

A1-Campfire -11.4% +0.18dB -9.8% +0.17dB
A1-FoodMarket4 -4.2% +0.13dB +1.4% -0.04dB
A1-Tango2 -6.1% +0.09dB -0.0% +0.01dB

A2-CatRobot1 -7.9% +0.14dB -0.1% +0.01dB
A2-DaylightRoad2 -8.5% +0.11dB +0.6% +0.00dB
A2-ParkRunning3 -12.0% +0.50dB -7.8% +0.32dB

Class A -8.4% +0.19dB -2.6% +0.08dB

B-BQTerrace -7.5% +0.12dB -0.2% +0.02dB
B-BasketballDrive -7.4% +0.17dB -1.7% +0.04dB
B-Cactus -1.4% +0.03dB -0.3% +0.00dB
B-MarketPlace -2.7% +0.07dB +2.3% -0.06dB
B-RitualDance -4.4% +0.21dB +1.2% -0.05dB

Class B -4.7% +0.12dB +0.3% -0.01dB

Class-Sequence EBDA-CNN EBDA-w/o CNN

BD-Rate BD-PSNR BD-Rate BD-PSNR

C-BQMall -5.6% +0.21dB +1.6% -0.06dB
C-BasketballDrill -6.0% +0.26dB +1.2% -0.05dB
C-PartyScene -3.7% +0.16dB +1.6% -0.06dB
C-RaceHorses -6.3% +0.24dB -2.0% +0.08dB

Class C -5.4% +0.22dB +0.6% -0.02dB

D-BQSquare -7.0% +0.25dB +2.1% -0.07dB
D-BasketballPass -7.2% +0.36dB -0.8% +0.05dB
D-BlowingBubbles -4.5% +0.18dB +1.3% -0.05dB
D-RaceHorses -6.9% +0.34dB -1.2% +0.06dB

Class D -6.4% +0.28dB -0.1% +0.01dB

Overall -6.4% +0.20dB -0.6% +0.02dB

The average encoding time is 1.02× that of the original HM 16.20, while the average decoding time is 69.3 times
that of HM.
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Example Rate-PSNR Curves
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I Without using CNN-based up-sampling, EBDA-w/o CNN does not provide any significant improvement
in coding efficiency.

I EBDA-CNN has achieved (although different) coding gains for all test sequences.
I The improvement is consistent across the whole tested QP range for all test content.
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Conclusions and Future Work

Conclusions
I An effective bit depth adaptation (EBDA-CNN) approach has been presented for video coding.
I It reduces effective bit depth (EBD) by 1 bit before encoding, and reconstructs full bit depth at the decoder

using a deep CNN based up-sampling method.
I This approach has been integrated into HEVC reference codec HM 16.20 and fully evaluated on JVET

CTC test sequences.
I The results show that consistent coding gains can be achieved for all tested sequences, with an average

BD-rate of -6.4%.

Future work
I To reduce the complexity of the CNN for EBD up-sampling.
I To extend its application on higher dynamic range (bit depth) content.
I To assess and investigate the subjective quality of the EBDA reconstructed content.
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When the Proposed EBDA is integrated into VTM 4.01

Class-Sequence BD-Rate

A-Campfire -11.3%
A-FoodMarket4 -0.6%
A-Tango2 -1.9%
A-CatRobot1 -3.6%
A-DaylightRoad2 -5.8%
A-ParkRunning3 -17.0%

Class A -6.7%

Class-Sequence BD-Rate

B-BQTerrace +0.1%
B-BasketballDrive -3.9%
B-Cactus -4.0%
B-MarketPlace +4.2%
B-RitualDance -2.2%

Class B -1.2%

Class-Sequence BD-Rate

C-BQMall -2.1%
C-BasketballDrill +0.7%
C-PartyScene -3.2%
C-RaceHorses -3.3%

Class C -2.0%

Class-Sequence BD-Rate

D-BQSquare -1.8%
D-BasketballPass -4.6%
D-BlowingBubbles -2.6%
D-RaceHorses -5.6%

Class D -3.7%

Overall -3.6%

Here the CNN model was re-trained with VTM 4.01 compressed content.
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