

UNIVERSITY of Manitoba

Semantic Segmentation in Compressed Videos

Ang Li, Yiwei Lu, Yang Wang

Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada

Introduction Input Frames Semantic Segmentation Feature Maps Encoder Decoder

Problem:

Existing approaches for semantic segmentation in videos usually extract each frame as an RGB image, then apply standard image-based semantic segmentation models on each frame. This is time-consuming.

I-frames:

In order to obtain the semantic segmentation of an I-frame, we use a standard encoder-decoder architecture for

semantic segmentation.

P-frames:

we apply a ConvLSTM module to accumulate the information of previous frames.

Goal:

We aim at building a faster semantic segmentation model by directly processing compressed videos. **Contributions:**

1. We propose a ConvLSTM model that propagates the temporal information from I-frame to succeeding P/B-frames for semantic segmentation.

2. Our experimental results show that the proposed method performs either better or on-par with standard frame-based methods. But the proposed method can run at a much faster speed.

Approach

Compressed Videos:

Experiments

Comparison of Performance:

Network	Pixel Accuracy	MeanIoU
FCN-32s [5]	91%	46.1%
FCN-8s [5]	92.6%	49.7%
ResNet [5]	95%	53%
Ours	94%	51%

Comparison of Inference Time:

Network	Inference time (ms per frame)	
FCN-32s	42.5	
FCN-8s	56	
ResNet	168	
Ours	17	

A compressed video contains three types of frames, I-frames, P-frames, and B-frames. I-frames are represented as regular images, P-frames are represented as motion vectors and residual errors, and B-frames are bidirectionally frames that can be regarded as a special case of a P frame.

Proposed Method:

Another Baseline:

This baseline first produces the semantic segmentation map on an I-frame. For remaining P-frames in the group, this baseline simply uses the semantic segmentation map from this I-frame as the prediction for each P-frame. **Comparison of Performance on this Baseline:**

CamVid

Network	Pixel Accuracy	MeanIoU
Baseline	89%	25%
Ours	94%	51%

tyscapes

Semantic Segmentation Prediction

Semantic Segmentation Prediction

Semantic Segmentation

Prediction

We divide frames in an entire video into several groups, while each group contains one I-frame and several P-frames, represented by the collection $\{I, P_1, P_2, \ldots, P_T\}$. Given the ground-truth semantic segmentation masks, our learning objective function can be described below: $L = L_{ce}(GT_I - f_s(I)) + \sum_{t=1}^T L_{ce}(GT_{P_t} - f_s(P_t))$

Our experimental results show that the proposed method performs on-par with frame-based methods in terms of accuracy. But our method can perform at a much higher speed during inference time. We believe our method can potentially be used in real-time applications where the efficiency is crucial.