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ABSTRACT

In this paper, we present a novel approach based on deep neural net-
work for solving the limited angle tomography problem. The limited
angle views in tomography cause severe artifacts in the tomographic
reconstruction. We use deep convolutional generative adversarial
networks (DCGAN) to fill in the missing information in the sino-
gram domain. By using the continuity loss and the two-ends method,
the image completion in the sinogram domain is done effectively,
resulting in high quality reconstructions with fewer artifacts. The
sinogram completion method can be applied to different problems
such as ring artifact removal and truncated tomography problems.

Index Terms— Limited angle tomography, sinogram image
completion, deep convolutional generative adversarial networks

1. INTRODUCTION

In principle, tomography needs projections to be collected at a 180◦

range of tilt angles, but it is often not possible to obtain a full angle
tomography due to the characteristics of the samples or the limita-
tions of the mechanical system that holds the sample. Figure 1 illus-
trates the limited angle tomography (LAT) problem and the resulting
artifacts from reconstruction. The sinogram of the full angle tomog-
raphy for the Shepp-Logan phantom is shown in Fig. 1 (a), which is
from 180 projections with angular increments of 1◦. Figures 1 (b)
and (c) show two LAT with missing angles (30◦, 60◦). The recon-
structions from the LAT have streaks and elongation artifacts while
that of the full angle tomography is almost the same as the origi-
nal phantom image as shown in Figs. 1 (d-f). As the missing angle
increases, the artifacts become more severe.

Different types of approaches have been developed to tackle the
LAT. The artifacts from the LAT problem can be mitigated with
post-processing. Filtering can be performed on the reconstruction
to suppress the artifacts, such as, a low-pass, bilateral [1], and non-
linear anisotropic diffusion filtering [2], to name a few. Zhang et
al. [3] proposed a convolutional neural network (CNN) to correct
the artifacts by learning the end-to-end mapping between the fil-
tered back-projection (FBP) reconstructed images with the artifacts
and artifact-free images. Sparsity-based regularization has also been
popular [4–7]. Frikel [4] used sparsity-based regularization with a
curvelet to compensate for the missing information. Goris et al. [5]
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Fig. 1: (a, b, c) Sinograms of different angle projections with 180◦,
150◦, 120◦ of Shepp-Logan phantom, and (d, e, f) filtered back-
projection reconstructions from the sinograms in (a, b, c)

proposed to use sparsity in the gradient domain to reduce the artifacts
by using total variation (TV) regularization. Other approaches [6, 7]
proposed to use the anisotropic TV algorithm taking into account
characteristics of the artifacts to efficiently suppress them.

Extrapolation-based approaches are also popular [8–10]. Such
approaches directly fill in the missing data in the sinogram domain
with the use of some constraints. Yau et al. [8] designed a linear ex-
trapolator for limited angle sinograms based on sampling theory and
regularization. Happonen and Ruotsalainen [9] presented the extrap-
olation of incomplete sinogram data in the sinogram and stackgram
domains based on the Gerchberg–Papoulis algorithm [11]. Huang et
al. [10] performed regression based on the Helgason-Ludwig consis-
tency condition to fill in the missing area in the sinogram with image
fusion in the frequency domain as post-processing.

The recent success of deep neural networks (DNNs) in image
processing and computer vision boosted the performance of the im-
age completion task [12–15], which can be applied to the image ex-
trapolation problem. Van den Oord et al. [12] presented a DNN to
sequentially predict the pixel values along the two spatial dimen-
sions, showing that it can learn the local and long-range correlations.
Pathak et al. [13] proposed a DNN to fill in the central square region
of an image by using an encoder-decoder architecture to capture the
context of an image. They used the adversarial loss to generate a
perceptually natural scene. Gao and Grauman [14] suggested an
on-demand learning algorithm to obtain a DNN that performs im-
age inpainting with missing regions being at different locations and
of different sizes. Yeh et al. [15] proposed an image completion
method based on a deep convolutional generative adversarial net-
work (DCGAN). Their loss function combines a contextual loss to
preserve the given information and a perceptual loss to encourage
the realistic look of the output image.

In this paper, we present a DCGAN-based extrapolation method
to solve the LAT problem. Inspired by [15], we propose to use a



DCGAN for completing the missing angle data in the sinogram do-
main. We incorporate the continuity loss to make a smooth transi-
tion across the boundary, and use the two-ends method to improve
the performance of image completion. We also show other applica-
tions of the proposed method to solve similar sinogram completion
problems such as the ring artifact removal and truncated tomography
problems. We describe the DCGAN for image completion in Sec-
tion 2. The proposed algorithms for sinogram completion are intro-
duced in Section 3. Experimental results and discussion are provided
in Section 4 and we conclude our paper in Section 5.

2. DCGAN FOR IMAGE COMPLETION

2.1. DCGAN
GAN is a DNN-based generative model that is trained by two com-
peting neural network models: a generator and a discriminator [16].
The deep convolutional GAN (DCGAN) introduces the CNN archi-
tecture into the GAN to generate image data more efficiently [17].

Let G and D denote the generative and discriminative networks
of a DCGAN, respectively. Given a random vector, z, with a dis-
tribution pz as an input, G generates an image, G(z). D maps an
input image to the probability that the input is from the true data
distribution, pdata. The output of D should be close to one if the
input image is from pdata, and close to zero otherwise. While G
tries to generate realistic images, D tries to distinguish images from
pdata and those generated from G. The networks are trained by the
minimax game, that is,

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] +

Ez∼pz(z)[log(1−D(G(z)))], (1)

where x is an image from pdata.

2.2. Image Completion with DCGAN
Once a DCGAN is trained to generate images in a certain domain,
the trained G and D can be utilized to perform image completion
[15]. Given a corrupted image, y, the mask of the known region, M,
and the trainedG andD, our goal is to get a restored image, x̂, close
to the original image, x. As a first step, the point, ẑ, is found in the
latent space corresponding to the given image as

ẑ = argmin
z

(Lcontextual + λLperceptual), (2)

where λ is a weighting parameter, and

Lcontextual(z) = ‖M� (G(z)− y)‖1, (3)

and
Lperceptual(z) = log(1−D(G(z))), (4)

where � is the Hadamard product operation.
Once ẑ is obtained, the image is completed as

x̂ = M� y + (1−M)�G(ẑ), (5)

where 1 denotes a matrix with elements equal to 1, so that (1−M)
indicates the corrupted region.

3. SINOGRAM COMPLETION

3.1. Continuity Loss Function
The method described in Section 2.2 is able to find a point in the
latent space based on the partial image and fill in the corrupted area
with realistic content. Although the overall patterns of the filled-in
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Fig. 2: Masks for the contextual and continuity losses. Gray and
black colors denote 1 and 0, respectively. (a) Mask for the known
part, M, and (b) the boundary mask, Mb
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Fig. 3: Rearrangement of the sinogram with circular shift (60◦ to
the left) and vertical reflection. (a) 180◦ angle tomography, and (b)
120◦ angle tomography.

region match those of the surrounding known region, the method
does not produce a smooth border between them. The resulting im-
age has discontinuities on the border of the two areas, thus requiring
post-processing for blending the border region [15].

Clearly, the information near the border is more important than
the remaining area for better estimation of the corrupted region.
Therefore, we propose to add an additional loss term to place more
weight on the border area and thus ensure consistency of the infor-
mation near the boundary. We refer to it as continuity loss and define
it as

Lcontinuity(z) = ‖Mb � (G(z)− y)‖22, (6)

where Mb denotes a boundary mask. Figure 2 illustrates the bound-
ary mask, Mb, in comparison with M. The thickness of the bound-
ary region in Mb is chosen empirically.

The total loss is therefore the sum of three loss terms as

Ltotal = λ1Lcontextual + λ2Lcontinuity + λ3Lperceptual, (7)

where λ1, λ2, λ3 are the weighting parameters for each loss term.

3.2. Two-Ends Method

In the LAT, the missing angle views are located outside the known
part as shown in Figs. 1 (b) and (c). Extrapolation is therefore per-
formed to compensate for the missing information. However, we
can convert the extrapolation task into an interpolation one by using
a unique property of sinograms. In tomography, the projection at the
angular distance of 180◦ means the projection along the exact oppo-
site direction, but in reverse order. Thus, the projection at angle d◦

is identical to the vertically reflected projection at angle (d+180)◦.
This property allows a circular shift of sinogram by any degree with-
out introducing any discontinuity inside the image as shown in Fig. 3
(a). By using this property, it is possible to rearrange the sinogram
image so that both ends of the missing area of the sinogram touch
known part of the sinogram.

Figure 3 (b) illustrates the rearrangement process of a sinogram
of LAT. The missing area moves to the middle of the image from
the right side, thus increasing the surrounding information for the
missing region. After the image completion, we shift and flip the
sinogram back to its original position.
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Fig. 4: Examples of training dataset. (a) Phantoms, and (b) corre-
sponding sinograms.

Fig. 5: Generated sinogram images from the DCGAN

4. EXPERIMENTAL RESULTS

4.1. DCGAN Training

For our experiments, we used foam type phantom images, which can
be generated by a python software package, XDesign [18], as shown
in Fig. 4 (a). The range of the pore size, gap between pores, and
porosity are set to create different shapes of foams in a parameterized
random manner. We converted them to the sinogram images by using
the Radon transform, as shown in Fig. 4 (b). The sinograms were
obtained for 180◦ angle tomography with 1◦ angular increment. The
sizes of the phantom and the sinogram were 128 × 128 and 180 ×
180, respectively. 9,000 singoram images were used for training.

We adopted the DCGAN architecture of [15] and changed the
size of the layers and the number of the feature maps. The input for
the generator, z, is a 100-dimensional vector, whose elements are
drawn with a uniform distribution from [−1, 1]. The generator has
one fully connected layer for the first layer, and a series of deconvo-
lutional layers with stride 2, doubling the image size at each layer. It
outputs a one-channel image of size 192 × 192. The output image
is larger than the size of the sinogram so it was cropped to obtain
the final image. The architecture of the discriminator is the reverse
of that of the generator except that it has an output of a scalar value
instead of a 100-dimensional vector.

Stochastic gradient descent with the Adam optimizer [19] is
used to train the DCGAN. We set the learning rate to 0.0001, the
parameters, β1 = 0.5, β2 = 0.999, and the batch size to 64. Fig-
ure 5 shows the output of the trained DCGAN from 8 randomly
chosen input vectors. The generated images look natural as real
sinogram images although they produce non-natural phantoms when
converted into the image domain.
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Fig. 6: Sinogram image completion for a test image from limited
angle tomography with different angle views, 150◦, 120◦, and 90◦.
(a) LAT, (b) GPE, and (c) the proposed method

4.2. Experiments with Synthetic Data

The result of sinogram image completion for a test image is illus-
trated in Fig. 6. As shown in Fig. 6 (b), Gerchberg–Papoulis extrap-
olation (GPE) is not able to handle the complicated sinogram pattern.
In contrast, in Fig. 6 (c), the proposed method generates the missing
pattern seamlessly. Even with large amount of missing information
(60◦, 90◦), the recovered sinogram looks quite natural. Note that we
tuned the parameters for the sinogram extrapolation methods. For
GPE, the cutoff frequencies are tuned with exhaustive search. The
weighting parameters, λ1, λ2, and λ3, in Eq. 5 are tuned for each
image for our method. The weight for the perceptual loss, λ3, is set
to a small value (0.1). The performance of the image completion is
not sensitive to the value of λ3. λ1 and λ2 are set to 0 and 1, re-
spectively, for 30◦ of the missing angle, and both to 1, otherwise.
It reflects the fact that the information near the border is enough for
small missing data, but more data is needed with large missing data.

We also see in Fig. 7 that the proposed method suppresses the
artifacts effectively in the image domain. It is compared with two
other approaches: (1) FBP reconstruction without any extrapolation
(LAT), and (2) FBP reconstruction with GPE [11]. The reconstruc-
tion from LAT shows elongation artifacts and two streaks from the
edges. Those artifacts become extremely severe when the missing
angle is 90◦. Both GPE and the proposed method effectively sup-
press the artifact outside the object. However, the reconstruction
from GPE still contains severe elongation and blurring artifacts in-
side the phantom. Since the proposed method restores the sinogram
better, it results in fewer artifacts and better contrast of the image.

The performance of reconstruction is summarized in Table 1.
PSNRs and SSIMs are calculated from the reconstruction of 4 test
images and the average numbers are recorded. Note that these met-
rics are calculated in the image domain, not in the sinogram domain,
because our ultimate goal is a better reconstruction in the image do-
main. The PSNRs achieved by the proposed method are significantly
higher than those by other methods, about 7 dB higher than those of
LAT and up to 3 dB higher than those of GPE.

The proposed method has robustness to noise as shown in Fig. 8
and Table 2. To simulate the noisy measurements, we added Gaus-
sian noise to the sinograms with two different standard deviations:
σn = 0.01 and σn = 0.05. The results show that, even with noise,
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Fig. 7: FBP reconstruction for a test image from limited angle to-
mography with different angle views, 150◦, 120◦, and 90◦. (a) LAT,
(b) GPE, and (c) the proposed method

Table 1: Performance of reconstruction
Missing angles 30◦ 60◦ 90◦

Method PSNR SSIM PSNR SSIM PSNR SSIM
LAT 15.52 0.2804 10.75 0.1982 7.35 0.1401
GPE 18.45 0.4866 15.28 0.4183 13.58 0.3810

Proposed 21.66 0.5965 17.41 0.4472 15.14 0.3783

Table 2: Performance of reconstruction from noisy data
Missing angles 30◦ 60◦ 90◦

σn Method PSNR SSIM PSNR SSIM PSNR SSIM

0.01 LAT 15.22 0.2493 10.64 0.1815 7.30 0.1293
Proposed 20.72 0.4380 16.98 0.3777 14.55 0.3369

0.05 LAT 10.92 0.1542 8.30 0.1138 5.76 0.0801
Proposed 13.47 0.2085 13.03 0.1980 12.44 0.1872

the proposed method is able to estimate the missing patterns effec-
tively. Note that it generates noiseless sinogram patterns although
the input sinogram is noisy. It is because the DCGAN is trained with
noiseless sinogram images.

4.3. Experiments with Real Data
To validate the proposed method, we tested it with experimental
data from a LiNi0.8Co0.15Al0.05O2 cathode in a fully-assembled in-
situ lithium-ion tomography cell, which allows X-ray transmission
over 150◦ of rotation. Full-field transmission X-ray microscopy was
performed at sector 32-ID-C of the Advanced Photon Source [20].
Again, we used XDesign [18] to generate the training images that
are consistent with the given data. 9,000 sinogram images are used
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Fig. 8: Experimental results with the noisy data (σn = 0.05). The
top and bottom rows are the cases of 150◦ and 90◦ angle tomorgra-
phy, respectively. (a) Signoram completion, and (b) FBP reconstruc-
tion from (a).
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Fig. 9: Sinogram image completion and image reconstruction with
an experimental data. (a) Sinogram image completion, and (b) FBP
image reconstruction from (a).
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Fig. 10: Other applications. The first and second columns show
sinograms with missing information, and the restored sinogram. The
third and fourth columns show the image reconstruction from sino-
grams in the first and second columns, respectively. (a) Ring artifact
removal in tomography, and (b) truncated tomography.

to train a DCGAN for the real data. Figure 9 shows sinogram image
completion and image reconstruction from the real data. The real
data is more challenging due to more noisy and blurry patterns and
non-uniform intensity of the projections. Nevertheless, the proposed
method recovers missing pattern and improves the image reconstruc-
tion.

4.4. Other Applications
We present two other applications to show that our method can solve
a broad range of problems. The first application is a ring artifact re-
moval problem in tomography [21,22]. Defective elements in the de-
tector cause stripes in the sinogram, resulting in a ring artifact in its
tomographic reconstruction. With the proposed method, the missing
information is restored and thus the ring artifact is removed as shown
in Fig. 10 (a). The second one is truncated tomography [23, 24].
When the object is larger than the field of view (FOV) of the detec-
tor, the information outside the FOV is cut off. Then the upper and
lower parts of the sinogram get truncated. The missing information
of the truncated tomography can be also recovered by the proposed
method as shown in Fig. 10 (b). The proposed method works effec-
tively even though a large amount of information is missing outside
of the FOV.

5. CONCLUSION

In this paper, we have presented a novel extrapolation-based method
to tackle the LAT problem. We train a DCGAN to generate sino-
grams and use it to perform sinogram image completion. Incorpo-
ration of the continuity loss and the two-ends scheme enables the
method to find the missing patterns of sinograms, and results in bet-
ter sinogram completion and image reconstruction. Experimental
results show the effectiveness of the proposed method both with re-
spect to objective measures and visual quality. It is also shown that
the method can be extended to solve other tomography problems
with missing information.
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