TOSHIBA

Dataset Culling: Towards Efficient Training of Distillationbased Domain Specific Models

K.Yoshioka^{(1)(2),} E. Lee⁽²⁾, S. Wong⁽²⁾, M. Horowitz⁽²⁾ (1) Toshiba

(2) Stanford University

IEEE ICIP 2019 Sept. 25

Introduction

Deep Learning based object detection has excellent accuracy.
e.g. Vision for security, infrastructure, transportation..

Cost?

- Requires many GPU-hours, difficult to scale.
- Has accuracy-cost tradeoff.

101-layer Resnet: Imagenet accuracy <u>78%</u> 10-layer Resnet: Imagenet accuracy <u>60%</u>

How can we break this tradeoff?

Introduction: Domain Specific Models

- Training compact domain specific models (DSMs) [1,2]
 - DSMs: a specialized model for specific env. {conference room, your house, your office, etc.}
- Cuts down computation cost <u>5-20x</u>

[1]D. Kang, "Noscope: optimizing neural network queries over video at scale," [2]R.Mullapudi "Online model distillation for efficient video inference,"

Introduction: What is Distillation?

- Teacher model teaches the small student model to learn
 - Works without human interference

Introduction: The Problem

- Can gather lots of training data easily..
 - A day's worth of surveillance data
 - =<u>86,400 images</u> @ 1FPS

- Training 86,400 images require <u>over 100 GPU-hours</u> (Nvidia K80 on AWS) to train.
 - Unable to scale to deploying thousands of cameras

Reducing the DSM training cost has not been explored.

Dataset Culling

Basic Idea of Dataset Culling

- Reduces the dataset size <u>300x</u>
 - Culls only <u>"Easy"</u> data; model accuracy is not harmed

What is good training data?

• <u>"Difficult" data</u> which the model makes a lot of mistakes.

- No backprop is done if the model can perfectly predict.
 - \rightarrow Does not contribute to training.
- Comparing teacher-student predictions are costly...

Can we assess from student predictions only?

How can we pick good training data?

- Quantify good data by proposed "confidence loss"
 - Assesses the difficulty of prediction from the output probability

Dataset culling pipeline

- First, cull dataset using <u>only the student model</u>
 - Culls out majority of the data first (50x).
 - Cheap; does not require costly teacher inference.

Dataset culling pipeline

Then, conduct a secondary culling using both teacher-student predictions.

- Directly determine errors the student makes.
- Data is culled up to <u>300x</u> by the pipeline.

Experiments

Experiment setups

- Models pretrained on MS-COCO:
 - Student: Resnet-18 based Faster-RCNN
 - Teacher: Resnet-101 based Faster-RCNN
- Dataset: 8 custom videos acquired from Youtube.
 - Train: first 24-hours
 - Validation: Subsequent 6-hours
 - Utilize teacher output as ground-truths

Qualitative results

Quantitative Results

• Can cull the dataset size to <u>300x</u>, without accuracy drops or even with improvements.

Conclusions

• While DSMs can reduce the inference cost, training them can take many GPU-hours.

• We proposed Dataset Culling, which reduces the DSM training cost by 47x.

- •Only easy to predict data are culled to minimize the accuracy drop.
- Evaluated on our long-duration dataset, we saw little to no accuracy penalty even with culling.

Codes and dataset available:

https://github.com/kentaroy47/DatasetCulling

Ablation study

- Entropy implements the loss function for active learning.
- Using teacher-student comparisons achieve best accuracy (Precision)
- Our dataset culling pipeline with Confidence + Precision has the best tradeoff of accuracy and training time.

		0		-		
Filtering strategy	Intermittent Samp.	Entropy[9]	Confidence	Precision	Confidence + Precision	Full dataset
mAP	0.731	0.866	0.911	0.954	0.948	0.958
GPU hours	0.15	1.7	1.7	8.0	2.0	104