

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY

HYDERABAD

KRISHNA GURUGUBELLI, AND ANIL KUMAR VUPPALA 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, BRIGHTON, UK

OBJECTIVES

- 1. Instantaneous spectral representation using single frequency filtering.
- 2. Dysarthria detection and dysarthric speech intelligibility assessment.

MOTIVATION

Dysarthria as an **abnormalities in instantaneous** variations in speech.

Averaged spectral representation over 20-30 ms. Growing interest in AM-FM based modulation feature representation of speech.

SINGLE FREQUENCY FILTER-BANK

The transfer function of single frequency filter (SFF) [1] is given by,

$$H(z) = \frac{1}{1 - az^{-1}}.$$
 (1)

The transfer function of frequency modulated SFF is given by,

$$H_k(z) = \frac{1}{1 - a_k z^{-1}}.$$
 (2)

Here $a_k = ae^{-jw_k}$, $w_k = \frac{\tilde{w}_k * 2 * \pi}{f_s}$, and \tilde{w}_k represents the k^{th} frequency component. The single frequency filter-bank can be realized as,

$$SF_{filterbank} = \begin{bmatrix} H_1(w) H_2(w) \dots H_k(w) \end{bmatrix}^T$$
 (3)

Here, k=1,2,3,...M, and the k^{th} filter response and corresponding temporal envelope are given by

$$y_k[n] = \sum_{i=1}^{N} h_k[i] x[n-i]$$
(4)

$$m_k[n] = \sqrt{y_{kR}^2[n] + y_{kI}^2[n]}$$
(5)

Temporal envelopes are together forms the instantaneous frequency distribution, and is further processed by perceptual operations.

PERCEPTUALLY ENHANCED SINGLE FREQUENCY FILTERING FOR DYSARTHRIC SPEECH DETECTION AND INTELLIGIBILITY ASSESSMENT

UA-SPEECH DATABASE

UA-Speech [2] is a publicly available dysarthric speech database.

• 16 dysarthric and 13 healthy speakers.

• 765 isolated words (uncommon words, common words, computer commands, digits, and radio alphabets).

• 4 groups dysarthric speakers based intelligibility (very low: 0-25%, low: 25-50%, medium: 50-75% and high: 75-100%)

EXPERIMENTAL SETUP

• List of experiments:

- 1. Dysarthric speech detection (DSD)
- 2. Dysarthric speech intelligibility assessment (DSIA)

• Base line features: Mel frequency cepstral coefficients (MFCC), Perceptual linear prediction (PLP) cepstral features, Multitaper MFCC, Constant-Q cepstral coefficients (CQCC)

• Classifier: i-vector with probabilistic linear discriminant analysis.

• Validation: Leave one speaker out validation.

• Speaker independent dysarthria assessment.

long silence regions are • Pre-processing: trimmed to 50ms by using SOX toolkit.

RESULTS

Table 1. Comparison between of PE-SFCC and other state-ofthe-art features in DSIA and DSD on UASPEECH database

	DSIA system	DSD system
	Accuracy in %	Accuracy in %
PLP features	45.55	80.01
MFCC	42.07	78.70
Iulti-taper MFCC	50.43	88.79
CQCC	49.14	91.38
PE-SFCC	60.78	93.64

RE	ES	U	L7
			N
			V
	Fig	5 . 4.	Сс
		тт•	1
	•	Hi	gh
	•	Po	or
		NC	
Inst the			
SFC			
Fu	JT	'U	\mathbf{R}
	•	Fu	
		dy	sai
	•	De	eteo
Ът		ΕI	
[1]		An cing	,
	sp	eec	h.
[2]		ngı Əeji	C
[-]		ive	
C		T	Ά

krishna.gugrugubelli@research.iiit.ac.in anil.vuppala@iiit.ac.in Speech Processing Laboratory, KCIS, LTRC IIIT, Hyderabad, India.

TS CONTD									
High	74.14	18.97	5.172	1.724	- 80 - 70				
Medium	24.14	34.48	20.69	20.69	- 60 - 50				
Low	13.86	24.07	50	12.07	- 40 - 30				
Verylow	1.724	1.724	12.07	84.48	- 20 - 10				
l	High	Medium	Low	Verylow					

onfusion matrix of DSIA system with PE-SFCC features.

confusion between neighboring classes.

detection accuracy of the class Medium.

USIONS

eous spectral features works better than ntional frame level features. Proposed PEperformed the state-of-the-art features.

E RESEARCH

on of Excitation source information for rthria assessment.

ection of dysarthria type.

ENCES

ja and B Yegnanarayana. Single frequency filapproach for discriminating speech and non-IEEE/ACM Transactions on Audio, Speech, and ge Processing, 23(4):705–717, 2015.

Kim and et. al. Dysarthric speech database for al access research. In *Proc. Interspeech*, 2008.

CT INFORMATION