MULTI-LABEL CLASSIFICATION FOR AUTOMATIC HUMAN BLASTOCYST GRADING WITH SEVERELY IMBALANCED DATA

Lisette Lockhart¹, Parvaneh Saeedi¹, Jon Havelock², Jason Au²

- ¹ Simon Fraser University, Burnaby, Canada
- ² Pacific Centre for Reproductive Medicine, Burnaby, Canada

Background

In Vitro Fertilization (IVF)

- Commonly performed medical procedure for couples suffering from infertility
- 30,000⁺ treatments performed annually in Canada; 230,000⁺ performed in U.S. [1]
- Steadily increasing with prevalence of reproductive issues and procreating later in life

https://www.mcrmfertility.com/

Low success rate: only 29.4% of implantations led to live birth

Background

In Vitro Fertilization (IVF)

- Eggs and sperm are collected and combined in a lab
- Embryos developed for 5 days (until blastocyst stage)
- Highest quality blastocyst(s) transferred to patient

Problem Description

Automatically Assess Blastocyst Quality

- Quality assessed by visually inspecting blastocysts
 - Contrast microscopy imaging non-invasive
- Blastocysts scored according to Gardner grading system
- Grading based on morphological components
- Zone pellucida (ZP)
- Trophectoderm (TE)
- Inner Cell Mass (ICM)
- Blastocoel

Problem Description

ZP (Expansion) score:

- 4 (blue)
- 3 (green)
- 2 (red)

Related Work

- Blastocyst segmentation using image processing and deep learning
- Medical image classification using deep learning
 - ✓ Classification on more closely related images using small datasets
 - 1 Typically binary or multi-class classification; **balanced datasets**
- Automatically classify blastocyst images into 'good' or 'poor' quality
 - ! Many blastocysts in a single batch are 'good' or 'poor'
 - ! How can they be ranked according to most important factors??
- ➤ No method for automatic blastocyst quality assessment with granular labels
 - More comprehensive assessment includes multiple grades (ICM, TE, ZP) each with multiple scores (A/B/C, A/B/C, 4/3/2)
 - Severely imbalanced training data (<5% samples in minority class)

Methodology – Pre-processing

Small dataset with significant variation within classes:

- Location/shape of blastocyst
- Fragmentation in background
- Neighbouring blastocysts

Reduce variation in data with pre-processing

a) Original image

- b) Remove image borders and scale bar
- c) Sobel edge filtering and morphological operations
- d) Best-fitting ellipse to blastocyst mask; crop to center

Methodology – Baseline Model

Transfer learning

- Learn convolution kernels by training on large image classification dataset
 - VGG16, ResNet50, InceptionV3 models
 - Network effectively separates images into 1000 classes
- 2. Fine-tune on small blastocyst image dataset
 - Replace fully connected top layers with small dense network
 - Freeze most layers during second training period

VGG16 Architecture

Output Formulation

Single grade classification

ICM or TE or ZP scoring Multi-class classification:

- 3×1 output vector
- Requires 3 separate networks! X Multiple grade classification
- ICM and TE and ZP scoring Multi-class classification:
- 27×1 output vector
- X Heavily imbalanced sample data! Multi-label multi-class classification:
- 3×3×1 output vector
- ✓ Best balance of class distributions

SFU

 $\implies \begin{cases} A \text{ or } 4 \leftrightarrow 0 \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \\ B \text{ or } 3 \leftrightarrow 1 \leftrightarrow \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \\ C \text{ or } 2 \leftrightarrow 2 \leftrightarrow \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \end{cases}$

$$\begin{cases} AA4 \leftrightarrow 0 \leftrightarrow \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \end{bmatrix} \\ AA3 \leftrightarrow 1 \leftrightarrow \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \end{bmatrix} \\ AA2 \leftrightarrow 2 \leftrightarrow \begin{bmatrix} 0 & 0 & 1 & \cdots & 0 \end{bmatrix} \\ \vdots & \vdots & & \vdots & & \\ CC2 \leftrightarrow 26 \leftrightarrow \begin{bmatrix} 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \end{cases}$$

Methodology – Proposed Model

Network diagram

- 1. VGG16 backbone
 - Shared convolution and pooling layers
 - Filter kernels pre-trained on ImageNet
 - Last 3 layers trainable
- 2. Multiple output branches
 - Individual dense layers
 - Trained in one pass
- 3. Cost function applied to each output branch
 - Categorical cross-entropy

Methodology – Stratified Sampling

Percentages of class samples are heavily skewed

- Image data collected at Pacific Centre for Reproductive Medicine in Burnaby, Canada from 2012-2018
- Data available only for embryos that were implanted
 - 1-2 highest quality embryos from an entire batch
- Greater percentage of A/A/3-grade blastocysts for ICM/TE/ZP
 - 1-2 highest quality embryos from an entire batch

ICM			TE	ZP (Expansion)			
А	507 (72.0%)	А	382 (54.3%)	4	248 (35.2%)		
В	190 (27.0%)	В	268 (38.1%)	3	300 (42.6%)		
С	7 (1.0%)	С	54 (7.6%)	2	156 (22.2%)		

Methodology – Stratified Sampling

Why is data imbalance a problem?

- Imbalanced data leads to different class sampling rates
 - X Majority classes are oversampled during training
 - X Minority classes are undersampled during training
 - X Choice of dataset splits can vastly influence performance
- How to ensure network is trained and tested fairly?
- Require a minimum amount of samples be present in each dataset split
 - ✓ Partition samples according to severely imbalanced ICM label
 - Fixed number of samples in minority class
 - Fixed percentage of samples in majority/middle classes
 - ✓ Ensures all classes are represented

Experimental Setup

- Images resized to 320×320 pixels
- Converted to RGB format
- Normalization sample-wise
 - Mean subtraction
 - Division by standard deviation
- Random data augmentations:
 - Rotation
 - Horizontal/vertical shifts
 - Zooming
 - Shearing

- Trained with RMSprop optimizer
- Initial learning rate: 10⁻⁶
 - Learning rate reduced by
 0.3 on plateau
- 3-fold cross-validation
 - 70% samples in training set
 - 15% in validation set
 - 15% in test set

Experimental Results

Granular Results - Confusion Matrices

- Blue cells represents correct predictions
- **Bold** text represents highest number of correct predictions for that class across networks

Model		Actual Classes										
		Label	ICM		TE		ZP (Expansion)					
		Class	Α	B	С	Α	В	С	Class	4	3	2
Predicted Classes		А	116	50	2	121	82	20	4	18	58	20
	ResNet50 [18] - 3×Single-Label	В	83	24	3	40	- 28	9	3	11	21	9
		С	29	10	1	12	6	0	2	33	61	0
	InceptionV3 [19] - 3×Single-Label	А	203	79	6	89	93	10	4	6	7	11
		В	18	2	0	60	53	13	3	25	60	54
		С	7	3	0	0	0	0	2	36	76	43
		А	228	84	6	103	46	2	4	- 29	11	0
	VGG16 [17] - 3×Single-Label	В	0	0	0	66	78	23	3	45	103	18
		С	0	0	0	0	0	0	2	0	24	88
	VGG16 - Multi-Label (Proposed)	А	214	63	4	151	57	0	4	57	9	0
		В	14	21	2	21	- 59	19	3	17	113	11
		С	0	0	0	0	7	4	2	0	21	90

Experimental Results

General Results

Global accuracy

• Ratio of correct predictions to total number of samples

Macro-weighted precision and recall

• Precision and recall calculated individually for each class, then averaged across 3 classes

Model	ICM				
Widder	Accuracy	Precision	Recall		
ResNet50 [18] - 3×Single-Label	44.3	30.3	32.0		
InceptionV3 [19] - 3×Single-Label	64.5	26.8	30.5		
VGG16 [17] - 3×Single-Label	71.7	23.8	33.3		
VGG16 - Multi-Label (Proposed)	73.9	44.3	39.6		

Model	TE					
Widder	Accuracy	Precision	Recall			
ResNet50 [18] - 3×Single-Label	46.9	30.2	31.4			
InceptionV3 [19] - 3×Single-Label	44.6	29.5	32.0			
VGG16 [17] - 3×Single-Label	56.9	38.3	41.3			
VGG16 - Multi-Label (Proposed)	67.3	56.1	51.0			

Model	ZP (Expansion)				
Model	Accuracy	Precision	Recall		
ResNet50 [18] - 3×Single-Label	23.9	24.9	25.3		
InceptionV3 [19] - 3×Single-Label	34.3	32.0	30.2		
VGG16 [17] - 3×Single-Label	69.2	71.0	65.6		
VGG16 - Multi-Label (Proposed)	81.8	82.5	81.7		

Discussion

- 1. Large networks (ResNet50 and InceptionV3) could not fine-tune on a small dataset
 - Overfitting during training led to poor test results
 - VGG16 had similar training and test performance
- 2. Deep learning models learn best using balanced data
 - Best classification performance on ZP grade label
 - Lower accuracy and precision/recall on ICM and TE labels
- 3. Bias towards majority class reduced in multi-label network
 - Less difference between accuracy and precision/recall
 - Baseline models precision < recall on ICM and TE labels
 - Proposed model precision > recall on ICM and TE labels

Conclusions & Future Work

- Multi-label multi-class blastocyst image classification with deep neural network
 - Performance improved by jointly learning to classify images in multiple grade labels
 - Parameter sharing led to more robust predictions
 - ✓ Stratified sampling enabled fair training and testing
 - ! Still exhibited weak performance for minority classes
- ➢ Train on all samples in IVF cycle − not just those implanted
- Utilize segmentation maps to associate grade information with different blastocyst regions
- Use images and grades to predict blastocyst implantation potential

1) National Center for Chronic Disease Prevention and Health Promotion: Division of Reproductive Health, "2015 Assisted Reproductive Technology National Summary Report," 2015.